Percolation transition in fractal dimensions

We provide a Monte Carlo analysis of the moments of the cluster size distributions built up from random occupation of deterministic Sierpinski fractals. Features of the site percolation transition in non-integer dimensions are investigated for two fractal dimensions lying between 1 and 2. Data colla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2004-11, Vol.332 (3), p.310-319
Hauptverfasser: Monceau, Pascal, Hsiao, Pai-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue 3
container_start_page 310
container_title Physics letters. A
container_volume 332
creator Monceau, Pascal
Hsiao, Pai-Yi
description We provide a Monte Carlo analysis of the moments of the cluster size distributions built up from random occupation of deterministic Sierpinski fractals. Features of the site percolation transition in non-integer dimensions are investigated for two fractal dimensions lying between 1 and 2. Data collapses of the moments when going from an iteration step of the fractal to the next are associated with a real space renormalization procedure and show that a constant gap scaling hypothesis is satisfied. Nevertheless, scaling corrections occuring in the behavior of the thresholds with the size of the lattices are stronger that in the standard percolation case; we point out that, in the case of fractals, a contribution to these corrections can be interpreted as a topological effect of the convergence towards the thermodynamical limit and described by a size dependent shift of the percolation threshold. The bounds of the infinite limit thresholds that we are able to provide are in disagreement with the predictions of Galam and Mauger in the case of translationally invariant lattices, and suggest a new behavior in the case of percolation in non-integer dimension.
doi_str_mv 10.1016/j.physleta.2004.09.068
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00701568v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960104013532</els_id><sourcerecordid>oai_HAL_hal_00701568v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-b9be11ecaf350552ed9bd58dcde548696e345c4c3193e03865683f7c797dbb193</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_guQqmDib_Uj2ZilqhYIe9Lxsdid0Q5qU3VDov3dr1aunGV7eZ2AeQm4pFBSofOiK3eYQe5xMUQLwAlQBsj4jM1pXLC95qc7JDFglciWBXpKrGDuARIKakft3DHbszeTHIZuCGaL_Xv2QtcHYyfSZ81tM8TjEa3LRmj7izc-ck8_np4_lKl-_vbwuF-vcMs6nvFENUorWtEyAECU61ThRO-tQ8FoqiYwLyy2jiiGwWgpZs7aylapc06RwTu5Odzem17vgtyYc9Gi8Xi3W-pgBVEATtaepK09dG8YYA7Z_AAV99KM7_etHH_1oUDr5SeDjCcT0yd5j0NF6HCw6H9BO2o3-vxNftihxow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Percolation transition in fractal dimensions</title><source>Elsevier ScienceDirect Journals</source><creator>Monceau, Pascal ; Hsiao, Pai-Yi</creator><creatorcontrib>Monceau, Pascal ; Hsiao, Pai-Yi</creatorcontrib><description>We provide a Monte Carlo analysis of the moments of the cluster size distributions built up from random occupation of deterministic Sierpinski fractals. Features of the site percolation transition in non-integer dimensions are investigated for two fractal dimensions lying between 1 and 2. Data collapses of the moments when going from an iteration step of the fractal to the next are associated with a real space renormalization procedure and show that a constant gap scaling hypothesis is satisfied. Nevertheless, scaling corrections occuring in the behavior of the thresholds with the size of the lattices are stronger that in the standard percolation case; we point out that, in the case of fractals, a contribution to these corrections can be interpreted as a topological effect of the convergence towards the thermodynamical limit and described by a size dependent shift of the percolation threshold. The bounds of the infinite limit thresholds that we are able to provide are in disagreement with the predictions of Galam and Mauger in the case of translationally invariant lattices, and suggest a new behavior in the case of percolation in non-integer dimension.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2004.09.068</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Condensed Matter ; Physics ; Statistical Mechanics</subject><ispartof>Physics letters. A, 2004-11, Vol.332 (3), p.310-319</ispartof><rights>2004 Elsevier B.V.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-b9be11ecaf350552ed9bd58dcde548696e345c4c3193e03865683f7c797dbb193</citedby><cites>FETCH-LOGICAL-c344t-b9be11ecaf350552ed9bd58dcde548696e345c4c3193e03865683f7c797dbb193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2004.09.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00701568$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Monceau, Pascal</creatorcontrib><creatorcontrib>Hsiao, Pai-Yi</creatorcontrib><title>Percolation transition in fractal dimensions</title><title>Physics letters. A</title><description>We provide a Monte Carlo analysis of the moments of the cluster size distributions built up from random occupation of deterministic Sierpinski fractals. Features of the site percolation transition in non-integer dimensions are investigated for two fractal dimensions lying between 1 and 2. Data collapses of the moments when going from an iteration step of the fractal to the next are associated with a real space renormalization procedure and show that a constant gap scaling hypothesis is satisfied. Nevertheless, scaling corrections occuring in the behavior of the thresholds with the size of the lattices are stronger that in the standard percolation case; we point out that, in the case of fractals, a contribution to these corrections can be interpreted as a topological effect of the convergence towards the thermodynamical limit and described by a size dependent shift of the percolation threshold. The bounds of the infinite limit thresholds that we are able to provide are in disagreement with the predictions of Galam and Mauger in the case of translationally invariant lattices, and suggest a new behavior in the case of percolation in non-integer dimension.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFb_guQqmDib_Uj2ZilqhYIe9Lxsdid0Q5qU3VDov3dr1aunGV7eZ2AeQm4pFBSofOiK3eYQe5xMUQLwAlQBsj4jM1pXLC95qc7JDFglciWBXpKrGDuARIKakft3DHbszeTHIZuCGaL_Xv2QtcHYyfSZ81tM8TjEa3LRmj7izc-ck8_np4_lKl-_vbwuF-vcMs6nvFENUorWtEyAECU61ThRO-tQ8FoqiYwLyy2jiiGwWgpZs7aylapc06RwTu5Odzem17vgtyYc9Gi8Xi3W-pgBVEATtaepK09dG8YYA7Z_AAV99KM7_etHH_1oUDr5SeDjCcT0yd5j0NF6HCw6H9BO2o3-vxNftihxow</recordid><startdate>20041115</startdate><enddate>20041115</enddate><creator>Monceau, Pascal</creator><creator>Hsiao, Pai-Yi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20041115</creationdate><title>Percolation transition in fractal dimensions</title><author>Monceau, Pascal ; Hsiao, Pai-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-b9be11ecaf350552ed9bd58dcde548696e345c4c3193e03865683f7c797dbb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monceau, Pascal</creatorcontrib><creatorcontrib>Hsiao, Pai-Yi</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monceau, Pascal</au><au>Hsiao, Pai-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Percolation transition in fractal dimensions</atitle><jtitle>Physics letters. A</jtitle><date>2004-11-15</date><risdate>2004</risdate><volume>332</volume><issue>3</issue><spage>310</spage><epage>319</epage><pages>310-319</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>We provide a Monte Carlo analysis of the moments of the cluster size distributions built up from random occupation of deterministic Sierpinski fractals. Features of the site percolation transition in non-integer dimensions are investigated for two fractal dimensions lying between 1 and 2. Data collapses of the moments when going from an iteration step of the fractal to the next are associated with a real space renormalization procedure and show that a constant gap scaling hypothesis is satisfied. Nevertheless, scaling corrections occuring in the behavior of the thresholds with the size of the lattices are stronger that in the standard percolation case; we point out that, in the case of fractals, a contribution to these corrections can be interpreted as a topological effect of the convergence towards the thermodynamical limit and described by a size dependent shift of the percolation threshold. The bounds of the infinite limit thresholds that we are able to provide are in disagreement with the predictions of Galam and Mauger in the case of translationally invariant lattices, and suggest a new behavior in the case of percolation in non-integer dimension.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2004.09.068</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2004-11, Vol.332 (3), p.310-319
issn 0375-9601
1873-2429
language eng
recordid cdi_hal_primary_oai_HAL_hal_00701568v1
source Elsevier ScienceDirect Journals
subjects Condensed Matter
Physics
Statistical Mechanics
title Percolation transition in fractal dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Percolation%20transition%20in%20fractal%20dimensions&rft.jtitle=Physics%20letters.%20A&rft.au=Monceau,%20Pascal&rft.date=2004-11-15&rft.volume=332&rft.issue=3&rft.spage=310&rft.epage=319&rft.pages=310-319&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2004.09.068&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00701568v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0375960104013532&rfr_iscdi=true