Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow
In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompres...
Gespeichert in:
Veröffentlicht in: | Journal of fluids and structures 2004-05, Vol.19 (4), p.449-466 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 4 |
container_start_page | 449 |
container_title | Journal of fluids and structures |
container_volume | 19 |
creator | Guilmineau, E. Queutey, P. |
description | In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST
K–
ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration. |
doi_str_mv | 10.1016/j.jfluidstructs.2004.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00699450v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974604000362</els_id><sourcerecordid>28237253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhk1podu07yAoLfRgZyRZskRPIaRNYUkuyVlo5XGjRbY3krxJ3r5aNqTkltPAzKeZH31V9ZVCQ4HK022zHcLi-5Tj4nJqGEDbAGtKeVetKGhRK8nY-2oFSulad638WH1KaQsAuuV0Vd1fLSNG72wgyY9LsNnPE5kHsp9jxsfaT_3isCd7v4kvM0ucj67AkbinUBCM5MHnOxLmBzLalOrejjs__SV-KnBe4mYJOGUyFOBz9WGwIeGX53pS3f66uDm_rNfXv_-cn61r1wqaa6EGSpVwVgi56Xut0HVMc8BO6haFBErRSsd7upHSdsAEit5xC8C51uj4SfXjuPfOBrOLfrTxyczWm8uztTn0AKTWrYA9Lez3I7uL8_2CKZvRJ4ch2AnnJRmmmBKKy7eAvGOCF_DnEXRxTini8BKBgjm4M1vzyp05uDPASqy2vP72fMamomaIdnI-_V8hlNRcHHJfHDksH7n3GE1yHqcizEd02fSzf9O9f5jmuLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28237253</pqid></control><display><type>article</type><title>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Guilmineau, E. ; Queutey, P.</creator><creatorcontrib>Guilmineau, E. ; Queutey, P.</creatorcontrib><description>In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST
K–
ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2004.02.004</identifier><identifier>CODEN: JFSTEF</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Mechanics ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of fluids and structures, 2004-05, Vol.19 (4), p.449-466</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</citedby><cites>FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</cites><orcidid>0000-0001-9070-093X ; 0000-0003-2298-1658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfluidstructs.2004.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15869351$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00699450$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guilmineau, E.</creatorcontrib><creatorcontrib>Queutey, P.</creatorcontrib><title>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</title><title>Journal of fluids and structures</title><description>In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST
K–
ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhk1podu07yAoLfRgZyRZskRPIaRNYUkuyVlo5XGjRbY3krxJ3r5aNqTkltPAzKeZH31V9ZVCQ4HK022zHcLi-5Tj4nJqGEDbAGtKeVetKGhRK8nY-2oFSulad638WH1KaQsAuuV0Vd1fLSNG72wgyY9LsNnPE5kHsp9jxsfaT_3isCd7v4kvM0ucj67AkbinUBCM5MHnOxLmBzLalOrejjs__SV-KnBe4mYJOGUyFOBz9WGwIeGX53pS3f66uDm_rNfXv_-cn61r1wqaa6EGSpVwVgi56Xut0HVMc8BO6haFBErRSsd7upHSdsAEit5xC8C51uj4SfXjuPfOBrOLfrTxyczWm8uztTn0AKTWrYA9Lez3I7uL8_2CKZvRJ4ch2AnnJRmmmBKKy7eAvGOCF_DnEXRxTini8BKBgjm4M1vzyp05uDPASqy2vP72fMamomaIdnI-_V8hlNRcHHJfHDksH7n3GE1yHqcizEd02fSzf9O9f5jmuLU</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Guilmineau, E.</creator><creator>Queutey, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9070-093X</orcidid><orcidid>https://orcid.org/0000-0003-2298-1658</orcidid></search><sort><creationdate>20040501</creationdate><title>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</title><author>Guilmineau, E. ; Queutey, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guilmineau, E.</creatorcontrib><creatorcontrib>Queutey, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guilmineau, E.</au><au>Queutey, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</atitle><jtitle>Journal of fluids and structures</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>19</volume><issue>4</issue><spage>449</spage><epage>466</epage><pages>449-466</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><coden>JFSTEF</coden><abstract>In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST
K–
ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2004.02.004</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9070-093X</orcidid><orcidid>https://orcid.org/0000-0003-2298-1658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-9746 |
ispartof | Journal of fluids and structures, 2004-05, Vol.19 (4), p.449-466 |
issn | 0889-9746 1095-8622 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00699450v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Engineering Sciences Exact sciences and technology Fluid mechanics Fluids mechanics Fundamental areas of phenomenology (including applications) Mechanics Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20vortex-induced%20vibration%20of%20a%20circular%20cylinder%20with%20low%20mass-damping%20in%20a%20turbulent%20flow&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Guilmineau,%20E.&rft.date=2004-05-01&rft.volume=19&rft.issue=4&rft.spage=449&rft.epage=466&rft.pages=449-466&rft.issn=0889-9746&rft.eissn=1095-8622&rft.coden=JFSTEF&rft_id=info:doi/10.1016/j.jfluidstructs.2004.02.004&rft_dat=%3Cproquest_hal_p%3E28237253%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28237253&rft_id=info:pmid/&rft_els_id=S0889974604000362&rfr_iscdi=true |