Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow

In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids and structures 2004-05, Vol.19 (4), p.449-466
Hauptverfasser: Guilmineau, E., Queutey, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 4
container_start_page 449
container_title Journal of fluids and structures
container_volume 19
creator Guilmineau, E.
Queutey, P.
description In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST K– ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.
doi_str_mv 10.1016/j.jfluidstructs.2004.02.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00699450v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974604000362</els_id><sourcerecordid>28237253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhk1podu07yAoLfRgZyRZskRPIaRNYUkuyVlo5XGjRbY3krxJ3r5aNqTkltPAzKeZH31V9ZVCQ4HK022zHcLi-5Tj4nJqGEDbAGtKeVetKGhRK8nY-2oFSulad638WH1KaQsAuuV0Vd1fLSNG72wgyY9LsNnPE5kHsp9jxsfaT_3isCd7v4kvM0ucj67AkbinUBCM5MHnOxLmBzLalOrejjs__SV-KnBe4mYJOGUyFOBz9WGwIeGX53pS3f66uDm_rNfXv_-cn61r1wqaa6EGSpVwVgi56Xut0HVMc8BO6haFBErRSsd7upHSdsAEit5xC8C51uj4SfXjuPfOBrOLfrTxyczWm8uztTn0AKTWrYA9Lez3I7uL8_2CKZvRJ4ch2AnnJRmmmBKKy7eAvGOCF_DnEXRxTini8BKBgjm4M1vzyp05uDPASqy2vP72fMamomaIdnI-_V8hlNRcHHJfHDksH7n3GE1yHqcizEd02fSzf9O9f5jmuLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28237253</pqid></control><display><type>article</type><title>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Guilmineau, E. ; Queutey, P.</creator><creatorcontrib>Guilmineau, E. ; Queutey, P.</creatorcontrib><description>In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST K– ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2004.02.004</identifier><identifier>CODEN: JFSTEF</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Mechanics ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of fluids and structures, 2004-05, Vol.19 (4), p.449-466</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</citedby><cites>FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</cites><orcidid>0000-0001-9070-093X ; 0000-0003-2298-1658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfluidstructs.2004.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15869351$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00699450$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guilmineau, E.</creatorcontrib><creatorcontrib>Queutey, P.</creatorcontrib><title>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</title><title>Journal of fluids and structures</title><description>In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST K– ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhk1podu07yAoLfRgZyRZskRPIaRNYUkuyVlo5XGjRbY3krxJ3r5aNqTkltPAzKeZH31V9ZVCQ4HK022zHcLi-5Tj4nJqGEDbAGtKeVetKGhRK8nY-2oFSulad638WH1KaQsAuuV0Vd1fLSNG72wgyY9LsNnPE5kHsp9jxsfaT_3isCd7v4kvM0ucj67AkbinUBCM5MHnOxLmBzLalOrejjs__SV-KnBe4mYJOGUyFOBz9WGwIeGX53pS3f66uDm_rNfXv_-cn61r1wqaa6EGSpVwVgi56Xut0HVMc8BO6haFBErRSsd7upHSdsAEit5xC8C51uj4SfXjuPfOBrOLfrTxyczWm8uztTn0AKTWrYA9Lez3I7uL8_2CKZvRJ4ch2AnnJRmmmBKKy7eAvGOCF_DnEXRxTini8BKBgjm4M1vzyp05uDPASqy2vP72fMamomaIdnI-_V8hlNRcHHJfHDksH7n3GE1yHqcizEd02fSzf9O9f5jmuLU</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Guilmineau, E.</creator><creator>Queutey, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9070-093X</orcidid><orcidid>https://orcid.org/0000-0003-2298-1658</orcidid></search><sort><creationdate>20040501</creationdate><title>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</title><author>Guilmineau, E. ; Queutey, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-58f1185ca556bdd98ec72930e7694e56011ea6c3d1b66a7025e5dc3a003399ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guilmineau, E.</creatorcontrib><creatorcontrib>Queutey, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guilmineau, E.</au><au>Queutey, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow</atitle><jtitle>Journal of fluids and structures</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>19</volume><issue>4</issue><spage>449</spage><epage>466</epage><pages>449-466</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><coden>JFSTEF</coden><abstract>In this paper, we present some numerical results from a study of the dynamics and fluid forcing on an elastically mounted rigid cylinder with low mass-damping, constrained to oscillate transversely to a free stream. The vortex shedding around the cylinder is investigated numerically by the incompressible two-dimensional Reynolds-Averaged Navier–Stokes (RANS) equations. These equations are written in a primitive formulation in which the Cartesian velocity components and pressure share the same location at the center of the control volume. The numerical method uses a consistent physical reconstruction for the mass and momentum fluxes: the so-called consistent physical interpolation (CPI) approach in a conservative discretization using finite volumes on structured grids. The turbulence modeling is carried out by the SST K– ω model of Menter (AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA). The numerical results are compared with the 1996 experimental results of Khalak and Williamson (J. Fluids Struct. 10 (1996) 455). The Reynolds number is in the range 900–15 000, the reduced velocity is including between 1.0 and 17.0. The mass ratio is 2.4 and the mass-damping is 0.013. Several initial conditions are used. According the initial condition used, the simulations predict correctly the maximum amplitude. On the other hand, the numerical results do not match the upper branch found experimentally. However, these results are encouraging, because no simulations have yet predicted such a high amplitude of vibration.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2004.02.004</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9070-093X</orcidid><orcidid>https://orcid.org/0000-0003-2298-1658</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0889-9746
ispartof Journal of fluids and structures, 2004-05, Vol.19 (4), p.449-466
issn 0889-9746
1095-8622
language eng
recordid cdi_hal_primary_oai_HAL_hal_00699450v1
source ScienceDirect Journals (5 years ago - present)
subjects Engineering Sciences
Exact sciences and technology
Fluid mechanics
Fluids mechanics
Fundamental areas of phenomenology (including applications)
Mechanics
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20vortex-induced%20vibration%20of%20a%20circular%20cylinder%20with%20low%20mass-damping%20in%20a%20turbulent%20flow&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Guilmineau,%20E.&rft.date=2004-05-01&rft.volume=19&rft.issue=4&rft.spage=449&rft.epage=466&rft.pages=449-466&rft.issn=0889-9746&rft.eissn=1095-8622&rft.coden=JFSTEF&rft_id=info:doi/10.1016/j.jfluidstructs.2004.02.004&rft_dat=%3Cproquest_hal_p%3E28237253%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28237253&rft_id=info:pmid/&rft_els_id=S0889974604000362&rfr_iscdi=true