Approximation of the distribution of excesses using a generalized probability weighted moment method

The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over a threshold. In this Note, we consider this approximation using a generalized probability weighted moment (GPWM) method. We study the asymptotic behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2005-03, Vol.340 (5), p.383-388
Hauptverfasser: Diebolt, Jean, Guillou, Armelle, Rached, Imen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 5
container_start_page 383
container_title Comptes rendus. Mathématique
container_volume 340
creator Diebolt, Jean
Guillou, Armelle
Rached, Imen
description The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over a threshold. In this Note, we consider this approximation using a generalized probability weighted moment (GPWM) method. We study the asymptotic behaviour of our new estimators and also the functional bias of the GPD as an estimate of the distribution function of the excesses. To cite this article: J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005). La méthode POT (pics au-delà d'un seuil) consiste à utiliser une distribution de Pareto généralisée (GPD) pour approximer la loi des excès au-delà d'un seuil. Dans cette Note, nous considérons cette approximation en utilisant une méthode des moments pondérés généralisés (GPWM). Nous étudions le comportement asymptotique des estimateurs ainsi que le biais fonctionnel de la loi GPD en tant qu'estimateur de la distribution des excès. Pour citer cet article : J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).
doi_str_mv 10.1016/j.crma.2005.01.017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00693863v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X05000403</els_id><sourcerecordid>32581102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-810b2b4bbb65e513bae156c684c542ab70f44b028c636db6075b1965a69498cf3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoOKdfwKe8KPjQmTRN2oIvY6gTBr4o-BaS9HbLaJuZZHPz05sx_7wJFxIOv3NzcpLkkuARwYTfLkfadXKUYcxGmMQpjpIBKYoypYxXx_HOKUlxQd9OkzPvlziaqqIaJPV4tXJ2azoZjO2RbVBYAKqND86o9Y8GWw3eg0drb_o5kmgOPTjZmk-oUfQrqUxrwg59gJkvQhQ720EfUAdhYevz5KSRrYeL73OYvD7cv0ym6ez58WkynqWaZiykJcEqU7lSijNghCoJhHHNy1yzPJOqwE2eK5yVmlNeK44LpkjFmeRVXpW6ocPk5rB3IVuxcvFTbiesNGI6nom9hjGvaMnphkT2-sDG-O9r8EF0xmtoW9mDXXsRE5WE4CyC2QHUznrvoPndTLDYly-WYl--2JcvMIlTRNPV93bptWwbJ3tt_J-Ts5g-qyJ3d-Ag1rIx4ITXBnoNtXGgg6it-e-ZL238m0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32581102</pqid></control><display><type>article</type><title>Approximation of the distribution of excesses using a generalized probability weighted moment method</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Diebolt, Jean ; Guillou, Armelle ; Rached, Imen</creator><creatorcontrib>Diebolt, Jean ; Guillou, Armelle ; Rached, Imen</creatorcontrib><description>The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over a threshold. In this Note, we consider this approximation using a generalized probability weighted moment (GPWM) method. We study the asymptotic behaviour of our new estimators and also the functional bias of the GPD as an estimate of the distribution function of the excesses. To cite this article: J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005). La méthode POT (pics au-delà d'un seuil) consiste à utiliser une distribution de Pareto généralisée (GPD) pour approximer la loi des excès au-delà d'un seuil. Dans cette Note, nous considérons cette approximation en utilisant une méthode des moments pondérés généralisés (GPWM). Nous étudions le comportement asymptotique des estimateurs ainsi que le biais fonctionnel de la loi GPD en tant qu'estimateur de la distribution des excès. Pour citer cet article : J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).</description><identifier>ISSN: 1631-073X</identifier><identifier>ISSN: 1778-3569</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/j.crma.2005.01.017</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Distribution theory ; Exact sciences and technology ; Mathematical Physics ; Mathematics ; Nonparametric inference ; Parametric inference ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Stochastic processes</subject><ispartof>Comptes rendus. Mathématique, 2005-03, Vol.340 (5), p.383-388</ispartof><rights>2005 Académie des sciences</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-810b2b4bbb65e513bae156c684c542ab70f44b028c636db6075b1965a69498cf3</citedby><cites>FETCH-LOGICAL-c325t-810b2b4bbb65e513bae156c684c542ab70f44b028c636db6075b1965a69498cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.crma.2005.01.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16560729$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00693863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Diebolt, Jean</creatorcontrib><creatorcontrib>Guillou, Armelle</creatorcontrib><creatorcontrib>Rached, Imen</creatorcontrib><title>Approximation of the distribution of excesses using a generalized probability weighted moment method</title><title>Comptes rendus. Mathématique</title><description>The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over a threshold. In this Note, we consider this approximation using a generalized probability weighted moment (GPWM) method. We study the asymptotic behaviour of our new estimators and also the functional bias of the GPD as an estimate of the distribution function of the excesses. To cite this article: J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005). La méthode POT (pics au-delà d'un seuil) consiste à utiliser une distribution de Pareto généralisée (GPD) pour approximer la loi des excès au-delà d'un seuil. Dans cette Note, nous considérons cette approximation en utilisant une méthode des moments pondérés généralisés (GPWM). Nous étudions le comportement asymptotique des estimateurs ainsi que le biais fonctionnel de la loi GPD en tant qu'estimateur de la distribution des excès. Pour citer cet article : J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).</description><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic processes</subject><issn>1631-073X</issn><issn>1778-3569</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYsoOKdfwKe8KPjQmTRN2oIvY6gTBr4o-BaS9HbLaJuZZHPz05sx_7wJFxIOv3NzcpLkkuARwYTfLkfadXKUYcxGmMQpjpIBKYoypYxXx_HOKUlxQd9OkzPvlziaqqIaJPV4tXJ2azoZjO2RbVBYAKqND86o9Y8GWw3eg0drb_o5kmgOPTjZmk-oUfQrqUxrwg59gJkvQhQ720EfUAdhYevz5KSRrYeL73OYvD7cv0ym6ez58WkynqWaZiykJcEqU7lSijNghCoJhHHNy1yzPJOqwE2eK5yVmlNeK44LpkjFmeRVXpW6ocPk5rB3IVuxcvFTbiesNGI6nom9hjGvaMnphkT2-sDG-O9r8EF0xmtoW9mDXXsRE5WE4CyC2QHUznrvoPndTLDYly-WYl--2JcvMIlTRNPV93bptWwbJ3tt_J-Ts5g-qyJ3d-Ag1rIx4ITXBnoNtXGgg6it-e-ZL238m0E</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Diebolt, Jean</creator><creator>Guillou, Armelle</creator><creator>Rached, Imen</creator><general>Elsevier SAS</general><general>Elsevier</general><general>Académie des sciences (Paris)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20050301</creationdate><title>Approximation of the distribution of excesses using a generalized probability weighted moment method</title><author>Diebolt, Jean ; Guillou, Armelle ; Rached, Imen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-810b2b4bbb65e513bae156c684c542ab70f44b028c636db6075b1965a69498cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebolt, Jean</creatorcontrib><creatorcontrib>Guillou, Armelle</creatorcontrib><creatorcontrib>Rached, Imen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebolt, Jean</au><au>Guillou, Armelle</au><au>Rached, Imen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of the distribution of excesses using a generalized probability weighted moment method</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>340</volume><issue>5</issue><spage>383</spage><epage>388</epage><pages>383-388</pages><issn>1631-073X</issn><issn>1778-3569</issn><eissn>1778-3569</eissn><abstract>The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over a threshold. In this Note, we consider this approximation using a generalized probability weighted moment (GPWM) method. We study the asymptotic behaviour of our new estimators and also the functional bias of the GPD as an estimate of the distribution function of the excesses. To cite this article: J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005). La méthode POT (pics au-delà d'un seuil) consiste à utiliser une distribution de Pareto généralisée (GPD) pour approximer la loi des excès au-delà d'un seuil. Dans cette Note, nous considérons cette approximation en utilisant une méthode des moments pondérés généralisés (GPWM). Nous étudions le comportement asymptotique des estimateurs ainsi que le biais fonctionnel de la loi GPD en tant qu'estimateur de la distribution des excès. Pour citer cet article : J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/j.crma.2005.01.017</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1631-073X
ispartof Comptes rendus. Mathématique, 2005-03, Vol.340 (5), p.383-388
issn 1631-073X
1778-3569
1778-3569
language eng
recordid cdi_hal_primary_oai_HAL_hal_00693863v1
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Distribution theory
Exact sciences and technology
Mathematical Physics
Mathematics
Nonparametric inference
Parametric inference
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Stochastic processes
title Approximation of the distribution of excesses using a generalized probability weighted moment method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20the%20distribution%20of%20excesses%20using%20a%20generalized%20probability%20weighted%20moment%20method&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Diebolt,%20Jean&rft.date=2005-03-01&rft.volume=340&rft.issue=5&rft.spage=383&rft.epage=388&rft.pages=383-388&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/j.crma.2005.01.017&rft_dat=%3Cproquest_hal_p%3E32581102%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32581102&rft_id=info:pmid/&rft_els_id=S1631073X05000403&rfr_iscdi=true