Rooted maps on orientable surfaces, Riccati's equation and continued fractions

We present a new approach in the study of rooted maps without regard to genus. We prove the existence of a new type of equation for the generating series of these maps enumerated with respect to edges and vertices. This is Riccati's equation. It seems to be the first time that such a differenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2000-03, Vol.215 (1), p.1-12
Hauptverfasser: Arquès, Didier, Béraud, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title Discrete mathematics
container_volume 215
creator Arquès, Didier
Béraud, Jean-François
description We present a new approach in the study of rooted maps without regard to genus. We prove the existence of a new type of equation for the generating series of these maps enumerated with respect to edges and vertices. This is Riccati's equation. It seems to be the first time that such a differential equation appears in the enumeration of rooted maps. Solving this equation leads to different closed forms of the studied generating series. The most interesting consequence is a development of this generating function in a very nice continued fraction leading to a new equation generalizing the well-known Dyck equation for rooted planar trees. In a second part, we also obtain a differential equation for the generating series of rooted trees regardless of the genus, with respect to edges. This also leads to a continued fraction for the generating series of rooted genus independent trees and to an unexpected relation between both previous generating series of trees and rooted maps.
doi_str_mv 10.1016/S0012-365X(99)00197-1
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00693781v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X99001971</els_id><sourcerecordid>S0012365X99001971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-788844f991e101b8a9fa27d831151d583daa9616668439e7c8a83e3f48eba2793</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdibFlxNmt3s5CSlqBWKQlXoLUyTLEbaTU22Bf-92VZ69TQfPO_APIRcMnrLKBN3b5SyYc5FOb-WcpAGWeXsiPQYVMNcAJsfk94BOSVnMX7RNAsOPfIy8761JlvhOma-yXxwtmlxsbRZ3IQatY032cxpja27ipn93qQmcdiYTPumdc0mpeuAulvHc3JS4zLai7_aJx-PD-_jST59fXoej6a55gBtXgFAUdRSMps-WADKGoeVAc5YyUwJ3CBKwYQQUHBpKw0I3PK6ALtIoOR9Mtjf_cSlWge3wvCjPDo1GU1Vt6NUSF4B27LElntWBx9jsPUhwKjqBKqdQNXZUVKqnUDV5e73OZse2TobVNRJjrbGBatbZbz758IvbFB3YQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rooted maps on orientable surfaces, Riccati's equation and continued fractions</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Arquès, Didier ; Béraud, Jean-François</creator><creatorcontrib>Arquès, Didier ; Béraud, Jean-François</creatorcontrib><description>We present a new approach in the study of rooted maps without regard to genus. We prove the existence of a new type of equation for the generating series of these maps enumerated with respect to edges and vertices. This is Riccati's equation. It seems to be the first time that such a differential equation appears in the enumeration of rooted maps. Solving this equation leads to different closed forms of the studied generating series. The most interesting consequence is a development of this generating function in a very nice continued fraction leading to a new equation generalizing the well-known Dyck equation for rooted planar trees. In a second part, we also obtain a differential equation for the generating series of rooted trees regardless of the genus, with respect to edges. This also leads to a continued fraction for the generating series of rooted genus independent trees and to an unexpected relation between both previous generating series of trees and rooted maps.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/S0012-365X(99)00197-1</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Continued fraction ; Dyck's equation ; Mathematical Physics ; Mathematics ; Riccati's equation ; Rooted map</subject><ispartof>Discrete mathematics, 2000-03, Vol.215 (1), p.1-12</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-788844f991e101b8a9fa27d831151d583daa9616668439e7c8a83e3f48eba2793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0012-365X(99)00197-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00693781$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arquès, Didier</creatorcontrib><creatorcontrib>Béraud, Jean-François</creatorcontrib><title>Rooted maps on orientable surfaces, Riccati's equation and continued fractions</title><title>Discrete mathematics</title><description>We present a new approach in the study of rooted maps without regard to genus. We prove the existence of a new type of equation for the generating series of these maps enumerated with respect to edges and vertices. This is Riccati's equation. It seems to be the first time that such a differential equation appears in the enumeration of rooted maps. Solving this equation leads to different closed forms of the studied generating series. The most interesting consequence is a development of this generating function in a very nice continued fraction leading to a new equation generalizing the well-known Dyck equation for rooted planar trees. In a second part, we also obtain a differential equation for the generating series of rooted trees regardless of the genus, with respect to edges. This also leads to a continued fraction for the generating series of rooted genus independent trees and to an unexpected relation between both previous generating series of trees and rooted maps.</description><subject>Continued fraction</subject><subject>Dyck's equation</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Riccati's equation</subject><subject>Rooted map</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdibFlxNmt3s5CSlqBWKQlXoLUyTLEbaTU22Bf-92VZ69TQfPO_APIRcMnrLKBN3b5SyYc5FOb-WcpAGWeXsiPQYVMNcAJsfk94BOSVnMX7RNAsOPfIy8761JlvhOma-yXxwtmlxsbRZ3IQatY032cxpja27ipn93qQmcdiYTPumdc0mpeuAulvHc3JS4zLai7_aJx-PD-_jST59fXoej6a55gBtXgFAUdRSMps-WADKGoeVAc5YyUwJ3CBKwYQQUHBpKw0I3PK6ALtIoOR9Mtjf_cSlWge3wvCjPDo1GU1Vt6NUSF4B27LElntWBx9jsPUhwKjqBKqdQNXZUVKqnUDV5e73OZse2TobVNRJjrbGBatbZbz758IvbFB3YQ</recordid><startdate>20000328</startdate><enddate>20000328</enddate><creator>Arquès, Didier</creator><creator>Béraud, Jean-François</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20000328</creationdate><title>Rooted maps on orientable surfaces, Riccati's equation and continued fractions</title><author>Arquès, Didier ; Béraud, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-788844f991e101b8a9fa27d831151d583daa9616668439e7c8a83e3f48eba2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Continued fraction</topic><topic>Dyck's equation</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Riccati's equation</topic><topic>Rooted map</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arquès, Didier</creatorcontrib><creatorcontrib>Béraud, Jean-François</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arquès, Didier</au><au>Béraud, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rooted maps on orientable surfaces, Riccati's equation and continued fractions</atitle><jtitle>Discrete mathematics</jtitle><date>2000-03-28</date><risdate>2000</risdate><volume>215</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>We present a new approach in the study of rooted maps without regard to genus. We prove the existence of a new type of equation for the generating series of these maps enumerated with respect to edges and vertices. This is Riccati's equation. It seems to be the first time that such a differential equation appears in the enumeration of rooted maps. Solving this equation leads to different closed forms of the studied generating series. The most interesting consequence is a development of this generating function in a very nice continued fraction leading to a new equation generalizing the well-known Dyck equation for rooted planar trees. In a second part, we also obtain a differential equation for the generating series of rooted trees regardless of the genus, with respect to edges. This also leads to a continued fraction for the generating series of rooted genus independent trees and to an unexpected relation between both previous generating series of trees and rooted maps.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0012-365X(99)00197-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2000-03, Vol.215 (1), p.1-12
issn 0012-365X
1872-681X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00693781v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Continued fraction
Dyck's equation
Mathematical Physics
Mathematics
Riccati's equation
Rooted map
title Rooted maps on orientable surfaces, Riccati's equation and continued fractions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rooted%20maps%20on%20orientable%20surfaces,%20Riccati's%20equation%20and%20continued%20fractions&rft.jtitle=Discrete%20mathematics&rft.au=Arqu%C3%A8s,%20Didier&rft.date=2000-03-28&rft.volume=215&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/S0012-365X(99)00197-1&rft_dat=%3Celsevier_hal_p%3ES0012365X99001971%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012365X99001971&rfr_iscdi=true