Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision

This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2012-08, Vol.33 (1-2), p.173-188
Hauptverfasser: Doitsidis, Lefteris, Weiss, Stephan, Renzaglia, Alessandro, Achtelik, Markus W., Kosmatopoulos, Elias, Siegwart, Roland, Scaramuzza, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 1-2
container_start_page 173
container_title Autonomous robots
container_volume 33
creator Doitsidis, Lefteris
Weiss, Stephan
Renzaglia, Alessandro
Achtelik, Markus W.
Kosmatopoulos, Elias
Siegwart, Roland
Scaramuzza, Davide
description This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320, 2010 ). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.
doi_str_mv 10.1007/s10514-012-9292-1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00692534v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031318694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1podskP6A3QS_twemMZNmrYwhtUlhIIc1ZyPZoo2BLW8k29N9HxqWUQnoaePPNMG9eUbxHuESA5nNCkFiVgLxUXPESXxU7lI0oG8mb18UOslpKqcTb4l1KTwCgGoBdcbo7TW40A0tzXMgNg_EdsS4sFM2RmA2RTWTGxIJlo-tiYIaiy_xCj64bKDHn2c33-7In76hn5BcXgx_JT4nNyfkjC74NJvZscckFf168sWZIdPG7nhUPX7_8uL4tD3c3366vDmUnOUwlV6CMbGVNnbGqxa4Se1JIbc9NbxtobI8VCtmAqWTudgAttvve1sqSVVKcFZ-2vY9m0KeYPcZfOhinb68OetUAasWlqBbM7MeNPcXwc6Y06dGljtZnUJiTRhAocF-rKqMf_kGfwhx9dqI5lwqEqmr5PwoBlaj3sqkzhRuV35pSJPvnTgS9pqq3VHVOVa-p6vVUvs2kzPojxb83vzT0DPdMpCE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019368576</pqid></control><display><type>article</type><title>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</title><source>SpringerLink Journals</source><creator>Doitsidis, Lefteris ; Weiss, Stephan ; Renzaglia, Alessandro ; Achtelik, Markus W. ; Kosmatopoulos, Elias ; Siegwart, Roland ; Scaramuzza, Davide</creator><creatorcontrib>Doitsidis, Lefteris ; Weiss, Stephan ; Renzaglia, Alessandro ; Achtelik, Markus W. ; Kosmatopoulos, Elias ; Siegwart, Roland ; Scaramuzza, Davide</creatorcontrib><description>This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320, 2010 ). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-012-9292-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aerials ; Algorithms ; Artificial Intelligence ; Computer Imaging ; Computer Science ; Control ; Engineering ; Flight ; Mechatronics ; Micro air vehicles (MAV) ; Missions ; Morphology ; Optimization ; Pattern Recognition and Graphics ; Robotics ; Robotics and Automation ; Robots ; Surveillance ; Terrain ; Traffic surveillance ; Vehicles ; Vision</subject><ispartof>Autonomous robots, 2012-08, Vol.33 (1-2), p.173-188</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Autonomous Robots is a copyright of Springer, (2012). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</citedby><cites>FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</cites><orcidid>0000-0003-4339-2414 ; 0000-0001-8218-9430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-012-9292-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-012-9292-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00692534$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Doitsidis, Lefteris</creatorcontrib><creatorcontrib>Weiss, Stephan</creatorcontrib><creatorcontrib>Renzaglia, Alessandro</creatorcontrib><creatorcontrib>Achtelik, Markus W.</creatorcontrib><creatorcontrib>Kosmatopoulos, Elias</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><title>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320, 2010 ). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.</description><subject>Aerials</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Control</subject><subject>Engineering</subject><subject>Flight</subject><subject>Mechatronics</subject><subject>Micro air vehicles (MAV)</subject><subject>Missions</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Pattern Recognition and Graphics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Surveillance</subject><subject>Terrain</subject><subject>Traffic surveillance</subject><subject>Vehicles</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUFr3DAQhU1podskP6A3QS_twemMZNmrYwhtUlhIIc1ZyPZoo2BLW8k29N9HxqWUQnoaePPNMG9eUbxHuESA5nNCkFiVgLxUXPESXxU7lI0oG8mb18UOslpKqcTb4l1KTwCgGoBdcbo7TW40A0tzXMgNg_EdsS4sFM2RmA2RTWTGxIJlo-tiYIaiy_xCj64bKDHn2c33-7In76hn5BcXgx_JT4nNyfkjC74NJvZscckFf168sWZIdPG7nhUPX7_8uL4tD3c3366vDmUnOUwlV6CMbGVNnbGqxa4Se1JIbc9NbxtobI8VCtmAqWTudgAttvve1sqSVVKcFZ-2vY9m0KeYPcZfOhinb68OetUAasWlqBbM7MeNPcXwc6Y06dGljtZnUJiTRhAocF-rKqMf_kGfwhx9dqI5lwqEqmr5PwoBlaj3sqkzhRuV35pSJPvnTgS9pqq3VHVOVa-p6vVUvs2kzPojxb83vzT0DPdMpCE</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Doitsidis, Lefteris</creator><creator>Weiss, Stephan</creator><creator>Renzaglia, Alessandro</creator><creator>Achtelik, Markus W.</creator><creator>Kosmatopoulos, Elias</creator><creator>Siegwart, Roland</creator><creator>Scaramuzza, Davide</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4339-2414</orcidid><orcidid>https://orcid.org/0000-0001-8218-9430</orcidid></search><sort><creationdate>20120801</creationdate><title>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</title><author>Doitsidis, Lefteris ; Weiss, Stephan ; Renzaglia, Alessandro ; Achtelik, Markus W. ; Kosmatopoulos, Elias ; Siegwart, Roland ; Scaramuzza, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerials</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Control</topic><topic>Engineering</topic><topic>Flight</topic><topic>Mechatronics</topic><topic>Micro air vehicles (MAV)</topic><topic>Missions</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Pattern Recognition and Graphics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Surveillance</topic><topic>Terrain</topic><topic>Traffic surveillance</topic><topic>Vehicles</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doitsidis, Lefteris</creatorcontrib><creatorcontrib>Weiss, Stephan</creatorcontrib><creatorcontrib>Renzaglia, Alessandro</creatorcontrib><creatorcontrib>Achtelik, Markus W.</creatorcontrib><creatorcontrib>Kosmatopoulos, Elias</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doitsidis, Lefteris</au><au>Weiss, Stephan</au><au>Renzaglia, Alessandro</au><au>Achtelik, Markus W.</au><au>Kosmatopoulos, Elias</au><au>Siegwart, Roland</au><au>Scaramuzza, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>33</volume><issue>1-2</issue><spage>173</spage><epage>188</epage><pages>173-188</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320, 2010 ). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10514-012-9292-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4339-2414</orcidid><orcidid>https://orcid.org/0000-0001-8218-9430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-5593
ispartof Autonomous robots, 2012-08, Vol.33 (1-2), p.173-188
issn 0929-5593
1573-7527
language eng
recordid cdi_hal_primary_oai_HAL_hal_00692534v1
source SpringerLink Journals
subjects Aerials
Algorithms
Artificial Intelligence
Computer Imaging
Computer Science
Control
Engineering
Flight
Mechatronics
Micro air vehicles (MAV)
Missions
Morphology
Optimization
Pattern Recognition and Graphics
Robotics
Robotics and Automation
Robots
Surveillance
Terrain
Traffic surveillance
Vehicles
Vision
title Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20surveillance%20coverage%20for%20teams%20of%20micro%20aerial%20vehicles%20in%20GPS-denied%20environments%20using%20onboard%20vision&rft.jtitle=Autonomous%20robots&rft.au=Doitsidis,%20Lefteris&rft.date=2012-08-01&rft.volume=33&rft.issue=1-2&rft.spage=173&rft.epage=188&rft.pages=173-188&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-012-9292-1&rft_dat=%3Cproquest_hal_p%3E1031318694%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019368576&rft_id=info:pmid/&rfr_iscdi=true