Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision
This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper i...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2012-08, Vol.33 (1-2), p.173-188 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 1-2 |
container_start_page | 173 |
container_title | Autonomous robots |
container_volume | 33 |
creator | Doitsidis, Lefteris Weiss, Stephan Renzaglia, Alessandro Achtelik, Markus W. Kosmatopoulos, Elias Siegwart, Roland Scaramuzza, Davide |
description | This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320,
2010
). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas. |
doi_str_mv | 10.1007/s10514-012-9292-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00692534v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031318694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1podskP6A3QS_twemMZNmrYwhtUlhIIc1ZyPZoo2BLW8k29N9HxqWUQnoaePPNMG9eUbxHuESA5nNCkFiVgLxUXPESXxU7lI0oG8mb18UOslpKqcTb4l1KTwCgGoBdcbo7TW40A0tzXMgNg_EdsS4sFM2RmA2RTWTGxIJlo-tiYIaiy_xCj64bKDHn2c33-7In76hn5BcXgx_JT4nNyfkjC74NJvZscckFf168sWZIdPG7nhUPX7_8uL4tD3c3366vDmUnOUwlV6CMbGVNnbGqxa4Se1JIbc9NbxtobI8VCtmAqWTudgAttvve1sqSVVKcFZ-2vY9m0KeYPcZfOhinb68OetUAasWlqBbM7MeNPcXwc6Y06dGljtZnUJiTRhAocF-rKqMf_kGfwhx9dqI5lwqEqmr5PwoBlaj3sqkzhRuV35pSJPvnTgS9pqq3VHVOVa-p6vVUvs2kzPojxb83vzT0DPdMpCE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019368576</pqid></control><display><type>article</type><title>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</title><source>SpringerLink Journals</source><creator>Doitsidis, Lefteris ; Weiss, Stephan ; Renzaglia, Alessandro ; Achtelik, Markus W. ; Kosmatopoulos, Elias ; Siegwart, Roland ; Scaramuzza, Davide</creator><creatorcontrib>Doitsidis, Lefteris ; Weiss, Stephan ; Renzaglia, Alessandro ; Achtelik, Markus W. ; Kosmatopoulos, Elias ; Siegwart, Roland ; Scaramuzza, Davide</creatorcontrib><description>This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320,
2010
). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-012-9292-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aerials ; Algorithms ; Artificial Intelligence ; Computer Imaging ; Computer Science ; Control ; Engineering ; Flight ; Mechatronics ; Micro air vehicles (MAV) ; Missions ; Morphology ; Optimization ; Pattern Recognition and Graphics ; Robotics ; Robotics and Automation ; Robots ; Surveillance ; Terrain ; Traffic surveillance ; Vehicles ; Vision</subject><ispartof>Autonomous robots, 2012-08, Vol.33 (1-2), p.173-188</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Autonomous Robots is a copyright of Springer, (2012). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</citedby><cites>FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</cites><orcidid>0000-0003-4339-2414 ; 0000-0001-8218-9430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-012-9292-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-012-9292-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00692534$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Doitsidis, Lefteris</creatorcontrib><creatorcontrib>Weiss, Stephan</creatorcontrib><creatorcontrib>Renzaglia, Alessandro</creatorcontrib><creatorcontrib>Achtelik, Markus W.</creatorcontrib><creatorcontrib>Kosmatopoulos, Elias</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><title>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320,
2010
). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.</description><subject>Aerials</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Control</subject><subject>Engineering</subject><subject>Flight</subject><subject>Mechatronics</subject><subject>Micro air vehicles (MAV)</subject><subject>Missions</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Pattern Recognition and Graphics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Surveillance</subject><subject>Terrain</subject><subject>Traffic surveillance</subject><subject>Vehicles</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUFr3DAQhU1podskP6A3QS_twemMZNmrYwhtUlhIIc1ZyPZoo2BLW8k29N9HxqWUQnoaePPNMG9eUbxHuESA5nNCkFiVgLxUXPESXxU7lI0oG8mb18UOslpKqcTb4l1KTwCgGoBdcbo7TW40A0tzXMgNg_EdsS4sFM2RmA2RTWTGxIJlo-tiYIaiy_xCj64bKDHn2c33-7In76hn5BcXgx_JT4nNyfkjC74NJvZscckFf168sWZIdPG7nhUPX7_8uL4tD3c3366vDmUnOUwlV6CMbGVNnbGqxa4Se1JIbc9NbxtobI8VCtmAqWTudgAttvve1sqSVVKcFZ-2vY9m0KeYPcZfOhinb68OetUAasWlqBbM7MeNPcXwc6Y06dGljtZnUJiTRhAocF-rKqMf_kGfwhx9dqI5lwqEqmr5PwoBlaj3sqkzhRuV35pSJPvnTgS9pqq3VHVOVa-p6vVUvs2kzPojxb83vzT0DPdMpCE</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Doitsidis, Lefteris</creator><creator>Weiss, Stephan</creator><creator>Renzaglia, Alessandro</creator><creator>Achtelik, Markus W.</creator><creator>Kosmatopoulos, Elias</creator><creator>Siegwart, Roland</creator><creator>Scaramuzza, Davide</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4339-2414</orcidid><orcidid>https://orcid.org/0000-0001-8218-9430</orcidid></search><sort><creationdate>20120801</creationdate><title>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</title><author>Doitsidis, Lefteris ; Weiss, Stephan ; Renzaglia, Alessandro ; Achtelik, Markus W. ; Kosmatopoulos, Elias ; Siegwart, Roland ; Scaramuzza, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-2909a5b56ecaf9b1c438e91ebd2adf707fd1413570a451c4c00b1b8df69fef953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerials</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Control</topic><topic>Engineering</topic><topic>Flight</topic><topic>Mechatronics</topic><topic>Micro air vehicles (MAV)</topic><topic>Missions</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Pattern Recognition and Graphics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Surveillance</topic><topic>Terrain</topic><topic>Traffic surveillance</topic><topic>Vehicles</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doitsidis, Lefteris</creatorcontrib><creatorcontrib>Weiss, Stephan</creatorcontrib><creatorcontrib>Renzaglia, Alessandro</creatorcontrib><creatorcontrib>Achtelik, Markus W.</creatorcontrib><creatorcontrib>Kosmatopoulos, Elias</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doitsidis, Lefteris</au><au>Weiss, Stephan</au><au>Renzaglia, Alessandro</au><au>Achtelik, Markus W.</au><au>Kosmatopoulos, Elias</au><au>Siegwart, Roland</au><au>Scaramuzza, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>33</volume><issue>1-2</issue><spage>173</spage><epage>188</epage><pages>173-188</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320,
2010
). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10514-012-9292-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4339-2414</orcidid><orcidid>https://orcid.org/0000-0001-8218-9430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2012-08, Vol.33 (1-2), p.173-188 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00692534v1 |
source | SpringerLink Journals |
subjects | Aerials Algorithms Artificial Intelligence Computer Imaging Computer Science Control Engineering Flight Mechatronics Micro air vehicles (MAV) Missions Morphology Optimization Pattern Recognition and Graphics Robotics Robotics and Automation Robots Surveillance Terrain Traffic surveillance Vehicles Vision |
title | Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20surveillance%20coverage%20for%20teams%20of%20micro%20aerial%20vehicles%20in%20GPS-denied%20environments%20using%20onboard%20vision&rft.jtitle=Autonomous%20robots&rft.au=Doitsidis,%20Lefteris&rft.date=2012-08-01&rft.volume=33&rft.issue=1-2&rft.spage=173&rft.epage=188&rft.pages=173-188&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-012-9292-1&rft_dat=%3Cproquest_hal_p%3E1031318694%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019368576&rft_id=info:pmid/&rfr_iscdi=true |