Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems
This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems. Our methods are based on...
Gespeichert in:
Veröffentlicht in: | Computer aided design 2011-10, Vol.43 (10), p.1234-1249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1249 |
---|---|
container_issue | 10 |
container_start_page | 1234 |
container_title | Computer aided design |
container_volume | 43 |
creator | Thierry, Simon E.B. Schreck, Pascal Michelucci, Dominique Fünfzig, Christoph Génevaux, Jean-David |
description | This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems.
Our methods are based on the witness principle whose theoretical background is recalled in a first step. A method to generate a witness is then explained. We show that having a witness can be used to incrementally detect over-constrainedness and thus to compute a well-constrained boundary system. An algorithm is introduced to check if anchoring a given subset of the coordinates brings the number of solutions to a finite number.
An algorithm to efficiently identify all maximal well-constrained parts of a geometric constraint system is described. This allows us to design a powerful algorithm of decomposition, called
W
-decomposition, which is able to identify all well-constrained subsystems: it manages to decompose systems which were not decomposable by classic combinatorial methods.
► A powerful and easy to implement method to decompose constraint systems is presented. ► The decomposition algorithm is not sensitive to the connectivity of the constraint graph. ► A robust way to test rigidity and to identify maximal well-constrained systems is presented. ► All algorithms are incremental and can thus use idle time. |
doi_str_mv | 10.1016/j.cad.2011.06.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00691690v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448511001606</els_id><sourcerecordid>1671281995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-465cf2699fbcf2f24f461796bb079435f6821e9d307c356222fd5cee632b12b43</originalsourceid><addsrcrecordid>eNp9kUGLFDEUhIMoOK7-AG85Kti976W70x08LcvqCgN70XNIJy9OhpnOmGRmXX-9GUb26KmgqK-gKMbeI7QIKK-3rTWuFYDYgmwBpxdshdOoGiGn4SVbASA0fT8Nr9mbnLcAILBTK3a4-11oySEumUfPy4b4YygL5cz3VDbR8RK53ZhkbKEU_hA_Lo5S84nHUxVuFscfabdrbG0oyYSFHP9JscIpWP7sFp6fcqF9fsteebPL9O6fXrEfX-6-394364ev325v1o3tYSxNLwfrhVTKz1W96H0vcVRynmFUfTd4OQkk5ToYbTdIIYR3gyWSnZhRzH13xT5eejdmpw8p7E160tEEfX-z1mcPQCqUCk5Ysx8u2UOKv46Ui96HbOsqs1A8Zo1yRDGhUkON4iVqU8w5kX_uRtDnJ_RW1yf0-QkNUtcnKvP5wlDdewqUdLaBFksuJLJFuxj-Q_8F53ORWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671281995</pqid></control><display><type>article</type><title>Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Thierry, Simon E.B. ; Schreck, Pascal ; Michelucci, Dominique ; Fünfzig, Christoph ; Génevaux, Jean-David</creator><creatorcontrib>Thierry, Simon E.B. ; Schreck, Pascal ; Michelucci, Dominique ; Fünfzig, Christoph ; Génevaux, Jean-David</creatorcontrib><description>This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems.
Our methods are based on the witness principle whose theoretical background is recalled in a first step. A method to generate a witness is then explained. We show that having a witness can be used to incrementally detect over-constrainedness and thus to compute a well-constrained boundary system. An algorithm is introduced to check if anchoring a given subset of the coordinates brings the number of solutions to a finite number.
An algorithm to efficiently identify all maximal well-constrained parts of a geometric constraint system is described. This allows us to design a powerful algorithm of decomposition, called
W
-decomposition, which is able to identify all well-constrained subsystems: it manages to decompose systems which were not decomposable by classic combinatorial methods.
► A powerful and easy to implement method to decompose constraint systems is presented. ► The decomposition algorithm is not sensitive to the connectivity of the constraint graph. ► A robust way to test rigidity and to identify maximal well-constrained systems is presented. ► All algorithms are incremental and can thus use idle time.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2011.06.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>[formula omitted]-decomposition ; Algorithms ; Boundaries ; Combinatorial analysis ; Computer aided design ; Computer Science ; Decomposition ; Design engineering ; Geometric constraint solving ; Geometric constraints ; Jacobian matrix ; Mathematical models ; Modeling and Simulation ; Over-constrainedness ; Transformation groups ; Under-constrainedness ; Well-constrainedness ; Witness configuration</subject><ispartof>Computer aided design, 2011-10, Vol.43 (10), p.1234-1249</ispartof><rights>2011 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-465cf2699fbcf2f24f461796bb079435f6821e9d307c356222fd5cee632b12b43</citedby><cites>FETCH-LOGICAL-c407t-465cf2699fbcf2f24f461796bb079435f6821e9d307c356222fd5cee632b12b43</cites><orcidid>0000-0002-1256-9080 ; 0000-0002-9267-746X ; 0000-0002-7384-5800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cad.2011.06.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00691690$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thierry, Simon E.B.</creatorcontrib><creatorcontrib>Schreck, Pascal</creatorcontrib><creatorcontrib>Michelucci, Dominique</creatorcontrib><creatorcontrib>Fünfzig, Christoph</creatorcontrib><creatorcontrib>Génevaux, Jean-David</creatorcontrib><title>Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems</title><title>Computer aided design</title><description>This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems.
Our methods are based on the witness principle whose theoretical background is recalled in a first step. A method to generate a witness is then explained. We show that having a witness can be used to incrementally detect over-constrainedness and thus to compute a well-constrained boundary system. An algorithm is introduced to check if anchoring a given subset of the coordinates brings the number of solutions to a finite number.
An algorithm to efficiently identify all maximal well-constrained parts of a geometric constraint system is described. This allows us to design a powerful algorithm of decomposition, called
W
-decomposition, which is able to identify all well-constrained subsystems: it manages to decompose systems which were not decomposable by classic combinatorial methods.
► A powerful and easy to implement method to decompose constraint systems is presented. ► The decomposition algorithm is not sensitive to the connectivity of the constraint graph. ► A robust way to test rigidity and to identify maximal well-constrained systems is presented. ► All algorithms are incremental and can thus use idle time.</description><subject>[formula omitted]-decomposition</subject><subject>Algorithms</subject><subject>Boundaries</subject><subject>Combinatorial analysis</subject><subject>Computer aided design</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Design engineering</subject><subject>Geometric constraint solving</subject><subject>Geometric constraints</subject><subject>Jacobian matrix</subject><subject>Mathematical models</subject><subject>Modeling and Simulation</subject><subject>Over-constrainedness</subject><subject>Transformation groups</subject><subject>Under-constrainedness</subject><subject>Well-constrainedness</subject><subject>Witness configuration</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUGLFDEUhIMoOK7-AG85Kti976W70x08LcvqCgN70XNIJy9OhpnOmGRmXX-9GUb26KmgqK-gKMbeI7QIKK-3rTWuFYDYgmwBpxdshdOoGiGn4SVbASA0fT8Nr9mbnLcAILBTK3a4-11oySEumUfPy4b4YygL5cz3VDbR8RK53ZhkbKEU_hA_Lo5S84nHUxVuFscfabdrbG0oyYSFHP9JscIpWP7sFp6fcqF9fsteebPL9O6fXrEfX-6-394364ev325v1o3tYSxNLwfrhVTKz1W96H0vcVRynmFUfTd4OQkk5ToYbTdIIYR3gyWSnZhRzH13xT5eejdmpw8p7E160tEEfX-z1mcPQCqUCk5Ysx8u2UOKv46Ui96HbOsqs1A8Zo1yRDGhUkON4iVqU8w5kX_uRtDnJ_RW1yf0-QkNUtcnKvP5wlDdewqUdLaBFksuJLJFuxj-Q_8F53ORWw</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Thierry, Simon E.B.</creator><creator>Schreck, Pascal</creator><creator>Michelucci, Dominique</creator><creator>Fünfzig, Christoph</creator><creator>Génevaux, Jean-David</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1256-9080</orcidid><orcidid>https://orcid.org/0000-0002-9267-746X</orcidid><orcidid>https://orcid.org/0000-0002-7384-5800</orcidid></search><sort><creationdate>20111001</creationdate><title>Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems</title><author>Thierry, Simon E.B. ; Schreck, Pascal ; Michelucci, Dominique ; Fünfzig, Christoph ; Génevaux, Jean-David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-465cf2699fbcf2f24f461796bb079435f6821e9d307c356222fd5cee632b12b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>[formula omitted]-decomposition</topic><topic>Algorithms</topic><topic>Boundaries</topic><topic>Combinatorial analysis</topic><topic>Computer aided design</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Design engineering</topic><topic>Geometric constraint solving</topic><topic>Geometric constraints</topic><topic>Jacobian matrix</topic><topic>Mathematical models</topic><topic>Modeling and Simulation</topic><topic>Over-constrainedness</topic><topic>Transformation groups</topic><topic>Under-constrainedness</topic><topic>Well-constrainedness</topic><topic>Witness configuration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thierry, Simon E.B.</creatorcontrib><creatorcontrib>Schreck, Pascal</creatorcontrib><creatorcontrib>Michelucci, Dominique</creatorcontrib><creatorcontrib>Fünfzig, Christoph</creatorcontrib><creatorcontrib>Génevaux, Jean-David</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thierry, Simon E.B.</au><au>Schreck, Pascal</au><au>Michelucci, Dominique</au><au>Fünfzig, Christoph</au><au>Génevaux, Jean-David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems</atitle><jtitle>Computer aided design</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>43</volume><issue>10</issue><spage>1234</spage><epage>1249</epage><pages>1234-1249</pages><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems.
Our methods are based on the witness principle whose theoretical background is recalled in a first step. A method to generate a witness is then explained. We show that having a witness can be used to incrementally detect over-constrainedness and thus to compute a well-constrained boundary system. An algorithm is introduced to check if anchoring a given subset of the coordinates brings the number of solutions to a finite number.
An algorithm to efficiently identify all maximal well-constrained parts of a geometric constraint system is described. This allows us to design a powerful algorithm of decomposition, called
W
-decomposition, which is able to identify all well-constrained subsystems: it manages to decompose systems which were not decomposable by classic combinatorial methods.
► A powerful and easy to implement method to decompose constraint systems is presented. ► The decomposition algorithm is not sensitive to the connectivity of the constraint graph. ► A robust way to test rigidity and to identify maximal well-constrained systems is presented. ► All algorithms are incremental and can thus use idle time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2011.06.018</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1256-9080</orcidid><orcidid>https://orcid.org/0000-0002-9267-746X</orcidid><orcidid>https://orcid.org/0000-0002-7384-5800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4485 |
ispartof | Computer aided design, 2011-10, Vol.43 (10), p.1234-1249 |
issn | 0010-4485 1879-2685 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00691690v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | [formula omitted]-decomposition Algorithms Boundaries Combinatorial analysis Computer aided design Computer Science Decomposition Design engineering Geometric constraint solving Geometric constraints Jacobian matrix Mathematical models Modeling and Simulation Over-constrainedness Transformation groups Under-constrainedness Well-constrainedness Witness configuration |
title | Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extensions%20of%20the%20witness%20method%20to%20characterize%20under-,%20over-%20and%20well-constrained%20geometric%20constraint%20systems&rft.jtitle=Computer%20aided%20design&rft.au=Thierry,%20Simon%20E.B.&rft.date=2011-10-01&rft.volume=43&rft.issue=10&rft.spage=1234&rft.epage=1249&rft.pages=1234-1249&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2011.06.018&rft_dat=%3Cproquest_hal_p%3E1671281995%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671281995&rft_id=info:pmid/&rft_els_id=S0010448511001606&rfr_iscdi=true |