Role of the Al source in the synthesis of aluminum magadiite

The role of the aluminum source on the insertion of Al in the silicate layers during the hydrothermal crystallization of magadiite (NaSi7O13(OH),4H2O), a lamellar silicate, was investigated. Three aluminum sources were compared: aluminum isopropoxide, aluminum sulfate and aluminum hydroxide We obser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied clay science 2012-03, Vol.57, p.71-78
Hauptverfasser: Bi, Yunfei, Blanchard, Juliette, Lambert, Jean-Francois, Millot, Yannick, Casale, Sandra, Zeng, Shuangqin, Nie, Hong, Li, Dadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 71
container_title Applied clay science
container_volume 57
creator Bi, Yunfei
Blanchard, Juliette
Lambert, Jean-Francois
Millot, Yannick
Casale, Sandra
Zeng, Shuangqin
Nie, Hong
Li, Dadong
description The role of the aluminum source on the insertion of Al in the silicate layers during the hydrothermal crystallization of magadiite (NaSi7O13(OH),4H2O), a lamellar silicate, was investigated. Three aluminum sources were compared: aluminum isopropoxide, aluminum sulfate and aluminum hydroxide We observed that aluminum isopropoxide leads to the presence of mordenite impurities, aluminum sulfate to an only partial insertion of aluminum, whereas aluminum hydroxide allows preparing at 150°C in 3days, well crystallized Al–magadiite samples with Si/Al ratios of 20 or 40. Characterization by 29Si and 27Al NMR of the Al–magadiite samples obtained with aluminum hydroxide as Al source indicates that the samples retain the main characteristics of magadiite and all the aluminum atoms are in tetrahedral substitution in the silicate framework. The presence of acid sites is evidenced by the activities of these samples in cumene cracking, a model reaction for strong Brønsted acidity. Well crystallized rosette-shaped Al–Magadiite particles (SEM), with all Al atoms in Td substitution in the silicate layers (27Al NMR) up to Si/Al=20 can be obtained within 3days of hydrothermal treatment at 150°C, provided that the appropriate aluminium source (Al(OH)3) is used. This lamellar aluminosilicate shows Brønsted acid properties which is promising for its use as starting material for the preparation high surface area acidic supports. [Display omitted] ► Effect of the nature of the Al precursor on the crystallization of Al–magadiite. ► Well crystallized Al–Magadiite (Si/Al=40 and 20) in 3days at 150C using Al(OH)3. ► Brønsted acid sites evidenced by cumene cracking.
doi_str_mv 10.1016/j.clay.2012.01.005
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00690843v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016913171200018X</els_id><sourcerecordid>1019634315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-bad0c74658a92619ac109f17ca277c44b32147f66ac1885e77482185e435aadf3</originalsourceid><addsrcrecordid>eNp90MFq3DAQBmARWsg26Qv05EugPdjRSLJkwV6WkDaFhUBIzmIiy4kW2d5K9sK-feVu2GNPI0bfzMBPyDegFVCQt7vKBjxWjAKrKFSU1hdkBY1ipaY1_0RWGekSOKhL8iWlHc2wqfWKrJ_G4IqxK6Z3V2xCkcY5Wlf44V8jHYdckk-LwDD3fpj7osc3bL2f3DX53GFI7utHvSIvP--f7x7K7eOv33ebbWm5VlP5ii21Ssi6Qc0kaLRAdQfKIlPKCvHKGQjVSZk_mqZ2SomGQX4IXiO2Hb8iP0573zGYffQ9xqMZ0ZuHzdYsPUqlpo3gB8j2-8nu4_hndmkyvU_WhYCDG-dkclxacsGhzpSdqI1jStF1591AFyfNziyxmiVWQyGfWYZuPvZjshi6iIP16TzJaikZFzS79cm5HMzBu2iS9W6wrvXR2cm0o__fmb98uYrN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019634315</pqid></control><display><type>article</type><title>Role of the Al source in the synthesis of aluminum magadiite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bi, Yunfei ; Blanchard, Juliette ; Lambert, Jean-Francois ; Millot, Yannick ; Casale, Sandra ; Zeng, Shuangqin ; Nie, Hong ; Li, Dadong</creator><creatorcontrib>Bi, Yunfei ; Blanchard, Juliette ; Lambert, Jean-Francois ; Millot, Yannick ; Casale, Sandra ; Zeng, Shuangqin ; Nie, Hong ; Li, Dadong</creatorcontrib><description>The role of the aluminum source on the insertion of Al in the silicate layers during the hydrothermal crystallization of magadiite (NaSi7O13(OH),4H2O), a lamellar silicate, was investigated. Three aluminum sources were compared: aluminum isopropoxide, aluminum sulfate and aluminum hydroxide We observed that aluminum isopropoxide leads to the presence of mordenite impurities, aluminum sulfate to an only partial insertion of aluminum, whereas aluminum hydroxide allows preparing at 150°C in 3days, well crystallized Al–magadiite samples with Si/Al ratios of 20 or 40. Characterization by 29Si and 27Al NMR of the Al–magadiite samples obtained with aluminum hydroxide as Al source indicates that the samples retain the main characteristics of magadiite and all the aluminum atoms are in tetrahedral substitution in the silicate framework. The presence of acid sites is evidenced by the activities of these samples in cumene cracking, a model reaction for strong Brønsted acidity. Well crystallized rosette-shaped Al–Magadiite particles (SEM), with all Al atoms in Td substitution in the silicate layers (27Al NMR) up to Si/Al=20 can be obtained within 3days of hydrothermal treatment at 150°C, provided that the appropriate aluminium source (Al(OH)3) is used. This lamellar aluminosilicate shows Brønsted acid properties which is promising for its use as starting material for the preparation high surface area acidic supports. [Display omitted] ► Effect of the nature of the Al precursor on the crystallization of Al–magadiite. ► Well crystallized Al–Magadiite (Si/Al=40 and 20) in 3days at 150C using Al(OH)3. ► Brønsted acid sites evidenced by cumene cracking.</description><identifier>ISSN: 0169-1317</identifier><identifier>EISSN: 1872-9053</identifier><identifier>DOI: 10.1016/j.clay.2012.01.005</identifier><identifier>CODEN: ACLSER</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>27Al NMR ; 29Si NMR ; Alumina hydrate ; Aluminium ; Aluminum ; Brønsted acidity ; Catalysis ; Chemical Sciences ; Crystallization ; Cumene ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fracture mechanics ; Insertion ; Lamellar silicates ; Mineralogy ; Phyllosilicates ; Silicates ; Sulfates</subject><ispartof>Applied clay science, 2012-03, Vol.57, p.71-78</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-bad0c74658a92619ac109f17ca277c44b32147f66ac1885e77482185e435aadf3</citedby><cites>FETCH-LOGICAL-c397t-bad0c74658a92619ac109f17ca277c44b32147f66ac1885e77482185e435aadf3</cites><orcidid>0009-0005-1044-6369 ; 0000-0003-1935-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.clay.2012.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25662340$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-00690843$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Yunfei</creatorcontrib><creatorcontrib>Blanchard, Juliette</creatorcontrib><creatorcontrib>Lambert, Jean-Francois</creatorcontrib><creatorcontrib>Millot, Yannick</creatorcontrib><creatorcontrib>Casale, Sandra</creatorcontrib><creatorcontrib>Zeng, Shuangqin</creatorcontrib><creatorcontrib>Nie, Hong</creatorcontrib><creatorcontrib>Li, Dadong</creatorcontrib><title>Role of the Al source in the synthesis of aluminum magadiite</title><title>Applied clay science</title><description>The role of the aluminum source on the insertion of Al in the silicate layers during the hydrothermal crystallization of magadiite (NaSi7O13(OH),4H2O), a lamellar silicate, was investigated. Three aluminum sources were compared: aluminum isopropoxide, aluminum sulfate and aluminum hydroxide We observed that aluminum isopropoxide leads to the presence of mordenite impurities, aluminum sulfate to an only partial insertion of aluminum, whereas aluminum hydroxide allows preparing at 150°C in 3days, well crystallized Al–magadiite samples with Si/Al ratios of 20 or 40. Characterization by 29Si and 27Al NMR of the Al–magadiite samples obtained with aluminum hydroxide as Al source indicates that the samples retain the main characteristics of magadiite and all the aluminum atoms are in tetrahedral substitution in the silicate framework. The presence of acid sites is evidenced by the activities of these samples in cumene cracking, a model reaction for strong Brønsted acidity. Well crystallized rosette-shaped Al–Magadiite particles (SEM), with all Al atoms in Td substitution in the silicate layers (27Al NMR) up to Si/Al=20 can be obtained within 3days of hydrothermal treatment at 150°C, provided that the appropriate aluminium source (Al(OH)3) is used. This lamellar aluminosilicate shows Brønsted acid properties which is promising for its use as starting material for the preparation high surface area acidic supports. [Display omitted] ► Effect of the nature of the Al precursor on the crystallization of Al–magadiite. ► Well crystallized Al–Magadiite (Si/Al=40 and 20) in 3days at 150C using Al(OH)3. ► Brønsted acid sites evidenced by cumene cracking.</description><subject>27Al NMR</subject><subject>29Si NMR</subject><subject>Alumina hydrate</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Brønsted acidity</subject><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Crystallization</subject><subject>Cumene</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Insertion</subject><subject>Lamellar silicates</subject><subject>Mineralogy</subject><subject>Phyllosilicates</subject><subject>Silicates</subject><subject>Sulfates</subject><issn>0169-1317</issn><issn>1872-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90MFq3DAQBmARWsg26Qv05EugPdjRSLJkwV6WkDaFhUBIzmIiy4kW2d5K9sK-feVu2GNPI0bfzMBPyDegFVCQt7vKBjxWjAKrKFSU1hdkBY1ipaY1_0RWGekSOKhL8iWlHc2wqfWKrJ_G4IqxK6Z3V2xCkcY5Wlf44V8jHYdckk-LwDD3fpj7osc3bL2f3DX53GFI7utHvSIvP--f7x7K7eOv33ebbWm5VlP5ii21Ssi6Qc0kaLRAdQfKIlPKCvHKGQjVSZk_mqZ2SomGQX4IXiO2Hb8iP0573zGYffQ9xqMZ0ZuHzdYsPUqlpo3gB8j2-8nu4_hndmkyvU_WhYCDG-dkclxacsGhzpSdqI1jStF1591AFyfNziyxmiVWQyGfWYZuPvZjshi6iIP16TzJaikZFzS79cm5HMzBu2iS9W6wrvXR2cm0o__fmb98uYrN</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Bi, Yunfei</creator><creator>Blanchard, Juliette</creator><creator>Lambert, Jean-Francois</creator><creator>Millot, Yannick</creator><creator>Casale, Sandra</creator><creator>Zeng, Shuangqin</creator><creator>Nie, Hong</creator><creator>Li, Dadong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0005-1044-6369</orcidid><orcidid>https://orcid.org/0000-0003-1935-4207</orcidid></search><sort><creationdate>20120301</creationdate><title>Role of the Al source in the synthesis of aluminum magadiite</title><author>Bi, Yunfei ; Blanchard, Juliette ; Lambert, Jean-Francois ; Millot, Yannick ; Casale, Sandra ; Zeng, Shuangqin ; Nie, Hong ; Li, Dadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-bad0c74658a92619ac109f17ca277c44b32147f66ac1885e77482185e435aadf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>27Al NMR</topic><topic>29Si NMR</topic><topic>Alumina hydrate</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Brønsted acidity</topic><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Crystallization</topic><topic>Cumene</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Insertion</topic><topic>Lamellar silicates</topic><topic>Mineralogy</topic><topic>Phyllosilicates</topic><topic>Silicates</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Yunfei</creatorcontrib><creatorcontrib>Blanchard, Juliette</creatorcontrib><creatorcontrib>Lambert, Jean-Francois</creatorcontrib><creatorcontrib>Millot, Yannick</creatorcontrib><creatorcontrib>Casale, Sandra</creatorcontrib><creatorcontrib>Zeng, Shuangqin</creatorcontrib><creatorcontrib>Nie, Hong</creatorcontrib><creatorcontrib>Li, Dadong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied clay science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Yunfei</au><au>Blanchard, Juliette</au><au>Lambert, Jean-Francois</au><au>Millot, Yannick</au><au>Casale, Sandra</au><au>Zeng, Shuangqin</au><au>Nie, Hong</au><au>Li, Dadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the Al source in the synthesis of aluminum magadiite</atitle><jtitle>Applied clay science</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>57</volume><spage>71</spage><epage>78</epage><pages>71-78</pages><issn>0169-1317</issn><eissn>1872-9053</eissn><coden>ACLSER</coden><abstract>The role of the aluminum source on the insertion of Al in the silicate layers during the hydrothermal crystallization of magadiite (NaSi7O13(OH),4H2O), a lamellar silicate, was investigated. Three aluminum sources were compared: aluminum isopropoxide, aluminum sulfate and aluminum hydroxide We observed that aluminum isopropoxide leads to the presence of mordenite impurities, aluminum sulfate to an only partial insertion of aluminum, whereas aluminum hydroxide allows preparing at 150°C in 3days, well crystallized Al–magadiite samples with Si/Al ratios of 20 or 40. Characterization by 29Si and 27Al NMR of the Al–magadiite samples obtained with aluminum hydroxide as Al source indicates that the samples retain the main characteristics of magadiite and all the aluminum atoms are in tetrahedral substitution in the silicate framework. The presence of acid sites is evidenced by the activities of these samples in cumene cracking, a model reaction for strong Brønsted acidity. Well crystallized rosette-shaped Al–Magadiite particles (SEM), with all Al atoms in Td substitution in the silicate layers (27Al NMR) up to Si/Al=20 can be obtained within 3days of hydrothermal treatment at 150°C, provided that the appropriate aluminium source (Al(OH)3) is used. This lamellar aluminosilicate shows Brønsted acid properties which is promising for its use as starting material for the preparation high surface area acidic supports. [Display omitted] ► Effect of the nature of the Al precursor on the crystallization of Al–magadiite. ► Well crystallized Al–Magadiite (Si/Al=40 and 20) in 3days at 150C using Al(OH)3. ► Brønsted acid sites evidenced by cumene cracking.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.clay.2012.01.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0005-1044-6369</orcidid><orcidid>https://orcid.org/0000-0003-1935-4207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-1317
ispartof Applied clay science, 2012-03, Vol.57, p.71-78
issn 0169-1317
1872-9053
language eng
recordid cdi_hal_primary_oai_HAL_hal_00690843v1
source Access via ScienceDirect (Elsevier)
subjects 27Al NMR
29Si NMR
Alumina hydrate
Aluminium
Aluminum
Brønsted acidity
Catalysis
Chemical Sciences
Crystallization
Cumene
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fracture mechanics
Insertion
Lamellar silicates
Mineralogy
Phyllosilicates
Silicates
Sulfates
title Role of the Al source in the synthesis of aluminum magadiite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20Al%20source%20in%20the%20synthesis%20of%20aluminum%20magadiite&rft.jtitle=Applied%20clay%20science&rft.au=Bi,%20Yunfei&rft.date=2012-03-01&rft.volume=57&rft.spage=71&rft.epage=78&rft.pages=71-78&rft.issn=0169-1317&rft.eissn=1872-9053&rft.coden=ACLSER&rft_id=info:doi/10.1016/j.clay.2012.01.005&rft_dat=%3Cproquest_hal_p%3E1019634315%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019634315&rft_id=info:pmid/&rft_els_id=S016913171200018X&rfr_iscdi=true