Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis

Using a statistical model in a diagnosis task generally requires a large amount of labeled data. When ground truth information is not available, too expensive or difficult to collect, one has to rely on expert knowledge. In this paper, it is proposed to use partial information from domain experts ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2012-05, Vol.16 (5), p.741-754
Hauptverfasser: Cherfi, Zohra L., Oukhellou, Latifa, Côme, Etienne, Denœux, Thierry, Aknin, Patrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 5
container_start_page 741
container_title Soft computing (Berlin, Germany)
container_volume 16
creator Cherfi, Zohra L.
Oukhellou, Latifa
Côme, Etienne
Denœux, Thierry
Aknin, Patrice
description Using a statistical model in a diagnosis task generally requires a large amount of labeled data. When ground truth information is not available, too expensive or difficult to collect, one has to rely on expert knowledge. In this paper, it is proposed to use partial information from domain experts expressed as belief functions. Expert opinions are combined in this framework and used with measurement data to estimate the parameters of a statistical model using a variant of the EM algorithm. The particular application investigated here concerns the diagnosis of railway track circuits. A noiseless Independent Factor Analysis model is postulated, assuming the observed variables extracted from railway track inspection signals to be generated by a linear mixture of independent latent variables linked to the system component states. Usually, learning with this statistical model is performed in an unsupervised way using unlabeled examples only. In this paper, it is proposed to handle this learning process in a soft-supervised way using imperfect information on the system component states. Fusing partially reliable information about cluster membership is shown to significantly improve classification results.
doi_str_mv 10.1007/s00500-011-0766-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00688783v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918050813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3549d1f196116b30bd4b11ee7f5b11a648424b8f2388eef1764c6b75f0a1a13f3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEEqXwANwsceIQ8MRO7HBbVZRWWgkOcLYmib24eOPgcUr3MXhjvATBicvMyPr-f-T5q-ol8DfAuXpLnLec1xyg5qrravmougApRK2k6h__nptadVI8rZ4R3XHegGrFRfXzE6bsMYQTo3Wx6d6TndjtPNnFljJndo1jjontZgwn8sRW8vOBUXSZBRxsIGaDH30uMpfikR3XkP0SLLMPxS_TO4bLUgjMPs4sR5bQhx94Yjnh-I2NPo2rz2zyeJhjWfC8euIwkH3xp19WX67ff766qfcfP9xe7fb1KHqRa9HKfgIHfQfQDYIPkxwArFWuLR07qWUjB-0aobW1Dsrfx25QreMICMKJy-r15vsVg1mSP2I6mYje3Oz25vzGeae10uIeCvtqY5cUv6-WsrmLayoXIdP0oMvpNYhCwUaNKRIl6_7aAjfnlMyWkikpmXNKRhZNs2mosPPBpn_O_xf9Ap2Mlww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918050813</pqid></control><display><type>article</type><title>Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Cherfi, Zohra L. ; Oukhellou, Latifa ; Côme, Etienne ; Denœux, Thierry ; Aknin, Patrice</creator><creatorcontrib>Cherfi, Zohra L. ; Oukhellou, Latifa ; Côme, Etienne ; Denœux, Thierry ; Aknin, Patrice</creatorcontrib><description>Using a statistical model in a diagnosis task generally requires a large amount of labeled data. When ground truth information is not available, too expensive or difficult to collect, one has to rely on expert knowledge. In this paper, it is proposed to use partial information from domain experts expressed as belief functions. Expert opinions are combined in this framework and used with measurement data to estimate the parameters of a statistical model using a variant of the EM algorithm. The particular application investigated here concerns the diagnosis of railway track circuits. A noiseless Independent Factor Analysis model is postulated, assuming the observed variables extracted from railway track inspection signals to be generated by a linear mixture of independent latent variables linked to the system component states. Usually, learning with this statistical model is performed in an unsupervised way using unlabeled examples only. In this paper, it is proposed to handle this learning process in a soft-supervised way using imperfect information on the system component states. Fusing partially reliable information about cluster membership is shown to significantly improve classification results.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-011-0766-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Computer Science ; Control ; Diagnosis ; Dogmatism ; Engineering ; Epistemology ; Factor analysis ; Fault diagnosis ; Focus ; Hypotheses ; Independent variables ; Labeling ; Learning ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Preventive maintenance ; Railway tracks ; Robotics ; Statistical models ; Track circuits ; Variables</subject><ispartof>Soft computing (Berlin, Germany), 2012-05, Vol.16 (5), p.741-754</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2011.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3549d1f196116b30bd4b11ee7f5b11a648424b8f2388eef1764c6b75f0a1a13f3</citedby><cites>FETCH-LOGICAL-c393t-3549d1f196116b30bd4b11ee7f5b11a648424b8f2388eef1764c6b75f0a1a13f3</cites><orcidid>0000-0002-0660-5436 ; 0000-0002-0459-6388 ; 0000-0002-5193-1732 ; 0000-0003-3557-0225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-011-0766-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918050813?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00688783$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherfi, Zohra L.</creatorcontrib><creatorcontrib>Oukhellou, Latifa</creatorcontrib><creatorcontrib>Côme, Etienne</creatorcontrib><creatorcontrib>Denœux, Thierry</creatorcontrib><creatorcontrib>Aknin, Patrice</creatorcontrib><title>Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Using a statistical model in a diagnosis task generally requires a large amount of labeled data. When ground truth information is not available, too expensive or difficult to collect, one has to rely on expert knowledge. In this paper, it is proposed to use partial information from domain experts expressed as belief functions. Expert opinions are combined in this framework and used with measurement data to estimate the parameters of a statistical model using a variant of the EM algorithm. The particular application investigated here concerns the diagnosis of railway track circuits. A noiseless Independent Factor Analysis model is postulated, assuming the observed variables extracted from railway track inspection signals to be generated by a linear mixture of independent latent variables linked to the system component states. Usually, learning with this statistical model is performed in an unsupervised way using unlabeled examples only. In this paper, it is proposed to handle this learning process in a soft-supervised way using imperfect information on the system component states. Fusing partially reliable information about cluster membership is shown to significantly improve classification results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Diagnosis</subject><subject>Dogmatism</subject><subject>Engineering</subject><subject>Epistemology</subject><subject>Factor analysis</subject><subject>Fault diagnosis</subject><subject>Focus</subject><subject>Hypotheses</subject><subject>Independent variables</subject><subject>Labeling</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Preventive maintenance</subject><subject>Railway tracks</subject><subject>Robotics</subject><subject>Statistical models</subject><subject>Track circuits</subject><subject>Variables</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFu1DAQhiMEEqXwANwsceIQ8MRO7HBbVZRWWgkOcLYmib24eOPgcUr3MXhjvATBicvMyPr-f-T5q-ol8DfAuXpLnLec1xyg5qrravmougApRK2k6h__nptadVI8rZ4R3XHegGrFRfXzE6bsMYQTo3Wx6d6TndjtPNnFljJndo1jjontZgwn8sRW8vOBUXSZBRxsIGaDH30uMpfikR3XkP0SLLMPxS_TO4bLUgjMPs4sR5bQhx94Yjnh-I2NPo2rz2zyeJhjWfC8euIwkH3xp19WX67ff766qfcfP9xe7fb1KHqRa9HKfgIHfQfQDYIPkxwArFWuLR07qWUjB-0aobW1Dsrfx25QreMICMKJy-r15vsVg1mSP2I6mYje3Oz25vzGeae10uIeCvtqY5cUv6-WsrmLayoXIdP0oMvpNYhCwUaNKRIl6_7aAjfnlMyWkikpmXNKRhZNs2mosPPBpn_O_xf9Ap2Mlww</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Cherfi, Zohra L.</creator><creator>Oukhellou, Latifa</creator><creator>Côme, Etienne</creator><creator>Denœux, Thierry</creator><creator>Aknin, Patrice</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0660-5436</orcidid><orcidid>https://orcid.org/0000-0002-0459-6388</orcidid><orcidid>https://orcid.org/0000-0002-5193-1732</orcidid><orcidid>https://orcid.org/0000-0003-3557-0225</orcidid></search><sort><creationdate>20120501</creationdate><title>Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis</title><author>Cherfi, Zohra L. ; Oukhellou, Latifa ; Côme, Etienne ; Denœux, Thierry ; Aknin, Patrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3549d1f196116b30bd4b11ee7f5b11a648424b8f2388eef1764c6b75f0a1a13f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Diagnosis</topic><topic>Dogmatism</topic><topic>Engineering</topic><topic>Epistemology</topic><topic>Factor analysis</topic><topic>Fault diagnosis</topic><topic>Focus</topic><topic>Hypotheses</topic><topic>Independent variables</topic><topic>Labeling</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Preventive maintenance</topic><topic>Railway tracks</topic><topic>Robotics</topic><topic>Statistical models</topic><topic>Track circuits</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherfi, Zohra L.</creatorcontrib><creatorcontrib>Oukhellou, Latifa</creatorcontrib><creatorcontrib>Côme, Etienne</creatorcontrib><creatorcontrib>Denœux, Thierry</creatorcontrib><creatorcontrib>Aknin, Patrice</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherfi, Zohra L.</au><au>Oukhellou, Latifa</au><au>Côme, Etienne</au><au>Denœux, Thierry</au><au>Aknin, Patrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>16</volume><issue>5</issue><spage>741</spage><epage>754</epage><pages>741-754</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Using a statistical model in a diagnosis task generally requires a large amount of labeled data. When ground truth information is not available, too expensive or difficult to collect, one has to rely on expert knowledge. In this paper, it is proposed to use partial information from domain experts expressed as belief functions. Expert opinions are combined in this framework and used with measurement data to estimate the parameters of a statistical model using a variant of the EM algorithm. The particular application investigated here concerns the diagnosis of railway track circuits. A noiseless Independent Factor Analysis model is postulated, assuming the observed variables extracted from railway track inspection signals to be generated by a linear mixture of independent latent variables linked to the system component states. Usually, learning with this statistical model is performed in an unsupervised way using unlabeled examples only. In this paper, it is proposed to handle this learning process in a soft-supervised way using imperfect information on the system component states. Fusing partially reliable information about cluster membership is shown to significantly improve classification results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00500-011-0766-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0660-5436</orcidid><orcidid>https://orcid.org/0000-0002-0459-6388</orcidid><orcidid>https://orcid.org/0000-0002-5193-1732</orcidid><orcidid>https://orcid.org/0000-0003-3557-0225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2012-05, Vol.16 (5), p.741-754
issn 1432-7643
1433-7479
language eng
recordid cdi_hal_primary_oai_HAL_hal_00688783v1
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computational Intelligence
Computer Science
Control
Diagnosis
Dogmatism
Engineering
Epistemology
Factor analysis
Fault diagnosis
Focus
Hypotheses
Independent variables
Labeling
Learning
Machine learning
Mathematical Logic and Foundations
Mechatronics
Preventive maintenance
Railway tracks
Robotics
Statistical models
Track circuits
Variables
title Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partially%20supervised%20Independent%20Factor%20Analysis%20using%20soft%20labels%20elicited%20from%20multiple%20experts:%20application%20to%20railway%20track%20circuit%20diagnosis&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Cherfi,%20Zohra%20L.&rft.date=2012-05-01&rft.volume=16&rft.issue=5&rft.spage=741&rft.epage=754&rft.pages=741-754&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-011-0766-4&rft_dat=%3Cproquest_hal_p%3E2918050813%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918050813&rft_id=info:pmid/&rfr_iscdi=true