Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms

In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural geology 2012-05, Vol.38, p.254-264
Hauptverfasser: Veveakis, Emmanuil, Sulem, Jean, Stefanou, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 254
container_title Journal of structural geology
container_volume 38
creator Veveakis, Emmanuil
Sulem, Jean
Stefanou, Ioannis
description In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing for rotational degrees of freedom to the gouge material, we verify that the micro-inertia of the Cosserat Continuum may regularize the ill-posed problem of simple shear of a fault and that the thermal effects promote localization of deformation into ultra-thin shear bands. It is shown that the width of these structures depends on the parameters of the decomposition reaction considered, obtaining values as low as 100 μm, in agreement with microstructural evidence from natural and artificial faults.
doi_str_mv 10.1016/j.jsg.2011.09.012
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00688670v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191814111001623</els_id><sourcerecordid>S0191814111001623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-22fcd4e724ca3448a24c6bd37223e95250e45efe38eeb1bdcbe6af81db2757703</originalsourceid><addsrcrecordid>eNp9kc-O1DAMxiMEEsPCA3DLlUNLnP6H02oE7Eqz4gLnKE3caYY2GcXtruBZeFhSFXHkZMuff3bij7G3IHIQUL-_5Bc651IA5KLLBchn7ABtU2SQas_ZQUAHWQslvGSviC4iMRWUB_b7IVicnD_zMPBBr9PCz2E9I_Ent4z8GIgw6iUlfnF-XWf-gGbU3hn6wO_9MK3oDW7wMmKc9cSvEYnW6H7pxQXPtbfcjDg7kzSLJszXQG6XiJtA6CiJ_An1D_TbQ-Z9Ac30mr0Y9ET45m-8Yd8_f_p2vMtOX7_cH29PmS66ZsmkHIwtsZGl0UVZtjoldW-LRsoCu0pWAssKByxaxB56a3qs9dCC7WVTNY0obti7fe6oJ3WNbtbxpwraqbvbk9pqQtRtWzfiEVIv7L0mpttEHP4BINRmhbqoZIXarFCiU8mKxHzcGUyfeHQYFRm33c26iGZRNrj_0H8AosiV0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Veveakis, Emmanuil ; Sulem, Jean ; Stefanou, Ioannis</creator><creatorcontrib>Veveakis, Emmanuil ; Sulem, Jean ; Stefanou, Ioannis</creatorcontrib><description>In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing for rotational degrees of freedom to the gouge material, we verify that the micro-inertia of the Cosserat Continuum may regularize the ill-posed problem of simple shear of a fault and that the thermal effects promote localization of deformation into ultra-thin shear bands. It is shown that the width of these structures depends on the parameters of the decomposition reaction considered, obtaining values as low as 100 μm, in agreement with microstructural evidence from natural and artificial faults.</description><identifier>ISSN: 0191-8141</identifier><identifier>EISSN: 1873-1201</identifier><identifier>DOI: 10.1016/j.jsg.2011.09.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cosserat Continuum ; Engineering Sciences ; Environmental Sciences ; Micro-inertia ; Reaction kinetics ; Shear heating ; Undrained adiabatic shearing</subject><ispartof>Journal of structural geology, 2012-05, Vol.38, p.254-264</ispartof><rights>2011 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-22fcd4e724ca3448a24c6bd37223e95250e45efe38eeb1bdcbe6af81db2757703</citedby><cites>FETCH-LOGICAL-a397t-22fcd4e724ca3448a24c6bd37223e95250e45efe38eeb1bdcbe6af81db2757703</cites><orcidid>0000-0002-4552-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsg.2011.09.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://enpc.hal.science/hal-00688670$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Veveakis, Emmanuil</creatorcontrib><creatorcontrib>Sulem, Jean</creatorcontrib><creatorcontrib>Stefanou, Ioannis</creatorcontrib><title>Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms</title><title>Journal of structural geology</title><description>In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing for rotational degrees of freedom to the gouge material, we verify that the micro-inertia of the Cosserat Continuum may regularize the ill-posed problem of simple shear of a fault and that the thermal effects promote localization of deformation into ultra-thin shear bands. It is shown that the width of these structures depends on the parameters of the decomposition reaction considered, obtaining values as low as 100 μm, in agreement with microstructural evidence from natural and artificial faults.</description><subject>Cosserat Continuum</subject><subject>Engineering Sciences</subject><subject>Environmental Sciences</subject><subject>Micro-inertia</subject><subject>Reaction kinetics</subject><subject>Shear heating</subject><subject>Undrained adiabatic shearing</subject><issn>0191-8141</issn><issn>1873-1201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O1DAMxiMEEsPCA3DLlUNLnP6H02oE7Eqz4gLnKE3caYY2GcXtruBZeFhSFXHkZMuff3bij7G3IHIQUL-_5Bc651IA5KLLBchn7ABtU2SQas_ZQUAHWQslvGSviC4iMRWUB_b7IVicnD_zMPBBr9PCz2E9I_Ent4z8GIgw6iUlfnF-XWf-gGbU3hn6wO_9MK3oDW7wMmKc9cSvEYnW6H7pxQXPtbfcjDg7kzSLJszXQG6XiJtA6CiJ_An1D_TbQ-Z9Ac30mr0Y9ET45m-8Yd8_f_p2vMtOX7_cH29PmS66ZsmkHIwtsZGl0UVZtjoldW-LRsoCu0pWAssKByxaxB56a3qs9dCC7WVTNY0obti7fe6oJ3WNbtbxpwraqbvbk9pqQtRtWzfiEVIv7L0mpttEHP4BINRmhbqoZIXarFCiU8mKxHzcGUyfeHQYFRm33c26iGZRNrj_0H8AosiV0g</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Veveakis, Emmanuil</creator><creator>Sulem, Jean</creator><creator>Stefanou, Ioannis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4552-7717</orcidid></search><sort><creationdate>20120501</creationdate><title>Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms</title><author>Veveakis, Emmanuil ; Sulem, Jean ; Stefanou, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-22fcd4e724ca3448a24c6bd37223e95250e45efe38eeb1bdcbe6af81db2757703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cosserat Continuum</topic><topic>Engineering Sciences</topic><topic>Environmental Sciences</topic><topic>Micro-inertia</topic><topic>Reaction kinetics</topic><topic>Shear heating</topic><topic>Undrained adiabatic shearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veveakis, Emmanuil</creatorcontrib><creatorcontrib>Sulem, Jean</creatorcontrib><creatorcontrib>Stefanou, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of structural geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veveakis, Emmanuil</au><au>Sulem, Jean</au><au>Stefanou, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms</atitle><jtitle>Journal of structural geology</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>38</volume><spage>254</spage><epage>264</epage><pages>254-264</pages><issn>0191-8141</issn><eissn>1873-1201</eissn><abstract>In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing for rotational degrees of freedom to the gouge material, we verify that the micro-inertia of the Cosserat Continuum may regularize the ill-posed problem of simple shear of a fault and that the thermal effects promote localization of deformation into ultra-thin shear bands. It is shown that the width of these structures depends on the parameters of the decomposition reaction considered, obtaining values as low as 100 μm, in agreement with microstructural evidence from natural and artificial faults.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsg.2011.09.012</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4552-7717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0191-8141
ispartof Journal of structural geology, 2012-05, Vol.38, p.254-264
issn 0191-8141
1873-1201
language eng
recordid cdi_hal_primary_oai_HAL_hal_00688670v1
source ScienceDirect Journals (5 years ago - present)
subjects Cosserat Continuum
Engineering Sciences
Environmental Sciences
Micro-inertia
Reaction kinetics
Shear heating
Undrained adiabatic shearing
title Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20fault%20gouges%20with%20Cosserat%20Continuum%20Mechanics:%20Influence%20of%20thermal%20pressurization%20and%20chemical%20decomposition%20as%20coseismic%20weakening%20mechanisms&rft.jtitle=Journal%20of%20structural%20geology&rft.au=Veveakis,%20Emmanuil&rft.date=2012-05-01&rft.volume=38&rft.spage=254&rft.epage=264&rft.pages=254-264&rft.issn=0191-8141&rft.eissn=1873-1201&rft_id=info:doi/10.1016/j.jsg.2011.09.012&rft_dat=%3Celsevier_hal_p%3ES0191814111001623%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0191814111001623&rfr_iscdi=true