Temperature beneath continents as a function of continental cover and convective wavelength

Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large‐scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2010-04, Vol.115 (B4), p.n/a
Hauptverfasser: Phillips, Benjamin R., Coltice, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B4
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 115
creator Phillips, Benjamin R.
Coltice, Nicolas
description Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large‐scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of the mantle. Here we use spherical mantle convection models with continents to quantify variations in subcontinental temperature as a function of continent size and distribution and convective wavelength. Through comparison to a simple analytical boundary layer model, we show that larger continents beget warming of the underlying mantle, with heating sometimes compounded by the formation of broader convection cells associated with the biggest continents. Our results hold well for purely internally heated and partially core heated models with Rayleigh numbers of 105 to 107 containing continents with sizes ranging from that of Antarctica to Pangea. Results from a time‐dependent model with three mobile continents of various sizes suggests that the tendency for temperatures to rise with continent size persists on average over timescales of billions of years.
doi_str_mv 10.1029/2009JB006600
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00687078v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730059828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5904-3cbac4f5fdd5df7f588e48e0f209ea893d26eb8f69926ab0dd2cf6b0bcde8c703</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEEqu2dzxABEKARGDi-JTLnthSrTiUIi64sBxnzKZkncVOUvr2OEq1ICQqRpZsjb__H3s0SfIoh1c5kPI1ASjPjwA4B7iXLEjOeEYIkPvJAnIqMyBEPEwOQriCGJRxCvki-XqJmy163Q8e0wod6n6dms71jUPXh1THldrBmb7pXNrZ33e6jecRfapdPWVHjMyI6bUesUX3rV_vJw-sbgMe3O57yec3p5fHZ9nq_fLt8eEq06wEmhWm0oZaZuua1VZYJiVSiWAJlKhlWdSEYyUtL0vCdQV1TYzlFVSmRmkEFHvJi9l3rVu19c1G-xvV6UadHa7UlItNkQKEHPPIPpvZre9-DBh6tWmCwbbVDrshKEEpz0FQ9h9kIQSL1pF8fieZiwKAlZLIiD7-C73qBu9id5SMdcsYE_TkX1ABLJZlkk-_fjlTxncheLS7r-egpolQf05ExJ_emupgdGu9dqYJO00cDgmSkMgVM3fdtHhzp6c6X14c5ZxQGlXZrGpCjz93Ku2_Ky7ig9WXd0v18dMHIVcXJ-qk-AVAf9Fl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861099998</pqid></control><display><type>article</type><title>Temperature beneath continents as a function of continental cover and convective wavelength</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Phillips, Benjamin R. ; Coltice, Nicolas</creator><creatorcontrib>Phillips, Benjamin R. ; Coltice, Nicolas</creatorcontrib><description>Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large‐scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of the mantle. Here we use spherical mantle convection models with continents to quantify variations in subcontinental temperature as a function of continent size and distribution and convective wavelength. Through comparison to a simple analytical boundary layer model, we show that larger continents beget warming of the underlying mantle, with heating sometimes compounded by the formation of broader convection cells associated with the biggest continents. Our results hold well for purely internally heated and partially core heated models with Rayleigh numbers of 105 to 107 containing continents with sizes ranging from that of Antarctica to Pangea. Results from a time‐dependent model with three mobile continents of various sizes suggests that the tendency for temperatures to rise with continent size persists on average over timescales of billions of years.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2009JB006600</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Aggregation ; Boundary layer models ; Boundary layers ; Climate change ; Continental dynamics ; continental insulation ; Continents ; Convection ; Convection cells ; Convection heating ; Convection models ; Earth ; Earth Sciences ; Earth, ocean, space ; Evolution ; Exact sciences and technology ; Feedback ; Geophysics ; Global warming ; Heating ; High performance computing ; Mantle ; Mantle convection ; Mathematical models ; numerical model ; Pangea ; Plate tectonics ; Sciences of the Universe ; Thermal evolution ; Wavelength ; Wavelengths</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2010-04, Vol.115 (B4), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2010</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5904-3cbac4f5fdd5df7f588e48e0f209ea893d26eb8f69926ab0dd2cf6b0bcde8c703</citedby><cites>FETCH-LOGICAL-a5904-3cbac4f5fdd5df7f588e48e0f209ea893d26eb8f69926ab0dd2cf6b0bcde8c703</cites><orcidid>0000-0001-5444-414X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JB006600$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JB006600$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,11523,27933,27934,45583,45584,46418,46477,46842,46901</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22780822$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00687078$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Phillips, Benjamin R.</creatorcontrib><creatorcontrib>Coltice, Nicolas</creatorcontrib><title>Temperature beneath continents as a function of continental cover and convective wavelength</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large‐scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of the mantle. Here we use spherical mantle convection models with continents to quantify variations in subcontinental temperature as a function of continent size and distribution and convective wavelength. Through comparison to a simple analytical boundary layer model, we show that larger continents beget warming of the underlying mantle, with heating sometimes compounded by the formation of broader convection cells associated with the biggest continents. Our results hold well for purely internally heated and partially core heated models with Rayleigh numbers of 105 to 107 containing continents with sizes ranging from that of Antarctica to Pangea. Results from a time‐dependent model with three mobile continents of various sizes suggests that the tendency for temperatures to rise with continent size persists on average over timescales of billions of years.</description><subject>Aggregation</subject><subject>Boundary layer models</subject><subject>Boundary layers</subject><subject>Climate change</subject><subject>Continental dynamics</subject><subject>continental insulation</subject><subject>Continents</subject><subject>Convection</subject><subject>Convection cells</subject><subject>Convection heating</subject><subject>Convection models</subject><subject>Earth</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Geophysics</subject><subject>Global warming</subject><subject>Heating</subject><subject>High performance computing</subject><subject>Mantle</subject><subject>Mantle convection</subject><subject>Mathematical models</subject><subject>numerical model</subject><subject>Pangea</subject><subject>Plate tectonics</subject><subject>Sciences of the Universe</subject><subject>Thermal evolution</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkttu1DAQhiMEEqu2dzxABEKARGDi-JTLnthSrTiUIi64sBxnzKZkncVOUvr2OEq1ICQqRpZsjb__H3s0SfIoh1c5kPI1ASjPjwA4B7iXLEjOeEYIkPvJAnIqMyBEPEwOQriCGJRxCvki-XqJmy163Q8e0wod6n6dms71jUPXh1THldrBmb7pXNrZ33e6jecRfapdPWVHjMyI6bUesUX3rV_vJw-sbgMe3O57yec3p5fHZ9nq_fLt8eEq06wEmhWm0oZaZuua1VZYJiVSiWAJlKhlWdSEYyUtL0vCdQV1TYzlFVSmRmkEFHvJi9l3rVu19c1G-xvV6UadHa7UlItNkQKEHPPIPpvZre9-DBh6tWmCwbbVDrshKEEpz0FQ9h9kIQSL1pF8fieZiwKAlZLIiD7-C73qBu9id5SMdcsYE_TkX1ABLJZlkk-_fjlTxncheLS7r-egpolQf05ExJ_emupgdGu9dqYJO00cDgmSkMgVM3fdtHhzp6c6X14c5ZxQGlXZrGpCjz93Ku2_Ky7ig9WXd0v18dMHIVcXJ-qk-AVAf9Fl</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Phillips, Benjamin R.</creator><creator>Coltice, Nicolas</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SM</scope><scope>7U6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5444-414X</orcidid></search><sort><creationdate>201004</creationdate><title>Temperature beneath continents as a function of continental cover and convective wavelength</title><author>Phillips, Benjamin R. ; Coltice, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5904-3cbac4f5fdd5df7f588e48e0f209ea893d26eb8f69926ab0dd2cf6b0bcde8c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aggregation</topic><topic>Boundary layer models</topic><topic>Boundary layers</topic><topic>Climate change</topic><topic>Continental dynamics</topic><topic>continental insulation</topic><topic>Continents</topic><topic>Convection</topic><topic>Convection cells</topic><topic>Convection heating</topic><topic>Convection models</topic><topic>Earth</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Geophysics</topic><topic>Global warming</topic><topic>Heating</topic><topic>High performance computing</topic><topic>Mantle</topic><topic>Mantle convection</topic><topic>Mathematical models</topic><topic>numerical model</topic><topic>Pangea</topic><topic>Plate tectonics</topic><topic>Sciences of the Universe</topic><topic>Thermal evolution</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Benjamin R.</creatorcontrib><creatorcontrib>Coltice, Nicolas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Benjamin R.</au><au>Coltice, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature beneath continents as a function of continental cover and convective wavelength</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-04</date><risdate>2010</risdate><volume>115</volume><issue>B4</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large‐scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of the mantle. Here we use spherical mantle convection models with continents to quantify variations in subcontinental temperature as a function of continent size and distribution and convective wavelength. Through comparison to a simple analytical boundary layer model, we show that larger continents beget warming of the underlying mantle, with heating sometimes compounded by the formation of broader convection cells associated with the biggest continents. Our results hold well for purely internally heated and partially core heated models with Rayleigh numbers of 105 to 107 containing continents with sizes ranging from that of Antarctica to Pangea. Results from a time‐dependent model with three mobile continents of various sizes suggests that the tendency for temperatures to rise with continent size persists on average over timescales of billions of years.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JB006600</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5444-414X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2010-04, Vol.115 (B4), p.n/a
issn 0148-0227
2169-9313
2156-2202
2169-9356
language eng
recordid cdi_hal_primary_oai_HAL_hal_00687078v1
source Wiley Online Library - AutoHoldings Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Aggregation
Boundary layer models
Boundary layers
Climate change
Continental dynamics
continental insulation
Continents
Convection
Convection cells
Convection heating
Convection models
Earth
Earth Sciences
Earth, ocean, space
Evolution
Exact sciences and technology
Feedback
Geophysics
Global warming
Heating
High performance computing
Mantle
Mantle convection
Mathematical models
numerical model
Pangea
Plate tectonics
Sciences of the Universe
Thermal evolution
Wavelength
Wavelengths
title Temperature beneath continents as a function of continental cover and convective wavelength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20beneath%20continents%20as%20a%20function%20of%20continental%20cover%20and%20convective%20wavelength&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Phillips,%20Benjamin%20R.&rft.date=2010-04&rft.volume=115&rft.issue=B4&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JB006600&rft_dat=%3Cproquest_hal_p%3E1730059828%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861099998&rft_id=info:pmid/&rfr_iscdi=true