Social organization and genetic structure: insights from codistributed bat populations
The impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2012-02, Vol.21 (3), p.647-661 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 661 |
---|---|
container_issue | 3 |
container_start_page | 647 |
container_title | Molecular ecology |
container_volume | 21 |
creator | ROSSITER, STEPHEN J. ZUBAID, AKBAR MOHD-ADNAN, ADURA STRUEBIG, MATTHEW J. KUNZ, THOMAS H. GOPAL, SUCHARITA PETIT, ERIC J. KINGSTON, TIGGA |
description | The impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding effects of history. We used microsatellites to compare genetic structure in seven bat species with contrasting patterns of roosting ecology and social organization, all of which are codistributed in an ancient forest habitat that has been exceptionally buffered from radical habitat shifts. Over one thousand individuals were captured at foraging sites and genotyped at polymorphic microsatellite loci. Analyses of spatially explicit genotype data revealed interspecies differences in the extent of movement and gene flow and genetic structure across continuous intact forest. Highest positive genetic structure was observed in tree‐roosting taxa that roost either alone or in small groups. By comparison, a complete absence of genetic autocorrelation was noted in the cave‐roosting colonial species across the study area. Our results thus reveal measurable interspecies differences in the natural limits of gene flow in an unmodified habitat, which we attribute to contrasting roosting ecology and social organization. The consequences of ecology and behaviour for gene flow have important implications for conservation. In particular, tree‐roosting species characterized by lower vagility and thus gene flow will be disproportionally impacted by landscape‐scale forest clearance and habitat fragmentation, which are prevalent in the study region. Our method also highlights the usefulness of rapid sampling of foraging bats for assaying genetic structure, particularly where roosting sites are not always known. |
doi_str_mv | 10.1111/j.1365-294X.2011.05391.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00686952v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>922215692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4991-f5439c9b5cddedb5e52e8cd0e72004b875ca0cdd1f4f3136fe541325c832a4da3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EokPhLyCLDWKR4EecxEgsqlHpIIaHxKu7K8dxph4y8WAnMOXXYzdlFqzqjS2f7xz5-iCEKclpXC-3OeWlyJgsLnNGKM2J4JLmh3tocRTuowWRJcsoqfkJehTClhDKmRAP0QljtKxZxRbo22enreqx8xs12D9qtG7AamjxxgxmtBqH0U96nLx5he0Q7OZqDLjzboe1a20UbTONpsWNGvHe7af-JiE8Rg861Qfz5HY_RV_fnH9ZrrL1x4u3y7N1pgspadaJgkstG6Hb1rSNMIKZWrfEVIyQoqkroRWJGu2KjsfJOiOKNIOuOVNFq_gpejHnXqke9t7ulL8GpyysztaQ7ggp61IK9otG9vnM7r37OZkwws4GbfpeDcZNASSL3yJKye5AkjrmVinz2X_k1k1-iCODpKKQJS8SVM-Q9i4Eb7rjSymB1CdsIdUGqTZIfcJNn3CI1qe3-VOzM-3R-K_ACLyegd-2N9d3Dob358t0iv5s9scuzeHoV_4HlBWvBHz_cAGf-Ipcrt8RWPK_4gm9qQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915496341</pqid></control><display><type>article</type><title>Social organization and genetic structure: insights from codistributed bat populations</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>ROSSITER, STEPHEN J. ; ZUBAID, AKBAR ; MOHD-ADNAN, ADURA ; STRUEBIG, MATTHEW J. ; KUNZ, THOMAS H. ; GOPAL, SUCHARITA ; PETIT, ERIC J. ; KINGSTON, TIGGA</creator><creatorcontrib>ROSSITER, STEPHEN J. ; ZUBAID, AKBAR ; MOHD-ADNAN, ADURA ; STRUEBIG, MATTHEW J. ; KUNZ, THOMAS H. ; GOPAL, SUCHARITA ; PETIT, ERIC J. ; KINGSTON, TIGGA</creatorcontrib><description>The impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding effects of history. We used microsatellites to compare genetic structure in seven bat species with contrasting patterns of roosting ecology and social organization, all of which are codistributed in an ancient forest habitat that has been exceptionally buffered from radical habitat shifts. Over one thousand individuals were captured at foraging sites and genotyped at polymorphic microsatellite loci. Analyses of spatially explicit genotype data revealed interspecies differences in the extent of movement and gene flow and genetic structure across continuous intact forest. Highest positive genetic structure was observed in tree‐roosting taxa that roost either alone or in small groups. By comparison, a complete absence of genetic autocorrelation was noted in the cave‐roosting colonial species across the study area. Our results thus reveal measurable interspecies differences in the natural limits of gene flow in an unmodified habitat, which we attribute to contrasting roosting ecology and social organization. The consequences of ecology and behaviour for gene flow have important implications for conservation. In particular, tree‐roosting species characterized by lower vagility and thus gene flow will be disproportionally impacted by landscape‐scale forest clearance and habitat fragmentation, which are prevalent in the study region. Our method also highlights the usefulness of rapid sampling of foraging bats for assaying genetic structure, particularly where roosting sites are not always known.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/j.1365-294X.2011.05391.x</identifier><identifier>PMID: 22168272</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal reproduction ; Animals ; Bats ; Behavioral biology ; Biodiversity and Ecology ; Chiroptera - genetics ; Ecological and Environmental Phenomena ; Ecosystem ; Environmental Sciences ; Gene Flow ; genetic autocorrelation ; Habitats ; Hierarchy, Social ; Kerivoula ; Microsatellite Repeats ; microsatellites ; monogamy ; polygyny ; Polymorphism ; Population ; Population genetics ; Rhinolophus ; roosting ecology ; Sexual Behavior, Animal ; Social Behavior ; Species Specificity</subject><ispartof>Molecular ecology, 2012-02, Vol.21 (3), p.647-661</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2011 Blackwell Publishing Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4991-f5439c9b5cddedb5e52e8cd0e72004b875ca0cdd1f4f3136fe541325c832a4da3</citedby><cites>FETCH-LOGICAL-c4991-f5439c9b5cddedb5e52e8cd0e72004b875ca0cdd1f4f3136fe541325c832a4da3</cites><orcidid>0000-0001-5058-5826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-294X.2011.05391.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-294X.2011.05391.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22168272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00686952$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>ROSSITER, STEPHEN J.</creatorcontrib><creatorcontrib>ZUBAID, AKBAR</creatorcontrib><creatorcontrib>MOHD-ADNAN, ADURA</creatorcontrib><creatorcontrib>STRUEBIG, MATTHEW J.</creatorcontrib><creatorcontrib>KUNZ, THOMAS H.</creatorcontrib><creatorcontrib>GOPAL, SUCHARITA</creatorcontrib><creatorcontrib>PETIT, ERIC J.</creatorcontrib><creatorcontrib>KINGSTON, TIGGA</creatorcontrib><title>Social organization and genetic structure: insights from codistributed bat populations</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>The impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding effects of history. We used microsatellites to compare genetic structure in seven bat species with contrasting patterns of roosting ecology and social organization, all of which are codistributed in an ancient forest habitat that has been exceptionally buffered from radical habitat shifts. Over one thousand individuals were captured at foraging sites and genotyped at polymorphic microsatellite loci. Analyses of spatially explicit genotype data revealed interspecies differences in the extent of movement and gene flow and genetic structure across continuous intact forest. Highest positive genetic structure was observed in tree‐roosting taxa that roost either alone or in small groups. By comparison, a complete absence of genetic autocorrelation was noted in the cave‐roosting colonial species across the study area. Our results thus reveal measurable interspecies differences in the natural limits of gene flow in an unmodified habitat, which we attribute to contrasting roosting ecology and social organization. The consequences of ecology and behaviour for gene flow have important implications for conservation. In particular, tree‐roosting species characterized by lower vagility and thus gene flow will be disproportionally impacted by landscape‐scale forest clearance and habitat fragmentation, which are prevalent in the study region. Our method also highlights the usefulness of rapid sampling of foraging bats for assaying genetic structure, particularly where roosting sites are not always known.</description><subject>Animal reproduction</subject><subject>Animals</subject><subject>Bats</subject><subject>Behavioral biology</subject><subject>Biodiversity and Ecology</subject><subject>Chiroptera - genetics</subject><subject>Ecological and Environmental Phenomena</subject><subject>Ecosystem</subject><subject>Environmental Sciences</subject><subject>Gene Flow</subject><subject>genetic autocorrelation</subject><subject>Habitats</subject><subject>Hierarchy, Social</subject><subject>Kerivoula</subject><subject>Microsatellite Repeats</subject><subject>microsatellites</subject><subject>monogamy</subject><subject>polygyny</subject><subject>Polymorphism</subject><subject>Population</subject><subject>Population genetics</subject><subject>Rhinolophus</subject><subject>roosting ecology</subject><subject>Sexual Behavior, Animal</subject><subject>Social Behavior</subject><subject>Species Specificity</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EokPhLyCLDWKR4EecxEgsqlHpIIaHxKu7K8dxph4y8WAnMOXXYzdlFqzqjS2f7xz5-iCEKclpXC-3OeWlyJgsLnNGKM2J4JLmh3tocRTuowWRJcsoqfkJehTClhDKmRAP0QljtKxZxRbo22enreqx8xs12D9qtG7AamjxxgxmtBqH0U96nLx5he0Q7OZqDLjzboe1a20UbTONpsWNGvHe7af-JiE8Rg861Qfz5HY_RV_fnH9ZrrL1x4u3y7N1pgspadaJgkstG6Hb1rSNMIKZWrfEVIyQoqkroRWJGu2KjsfJOiOKNIOuOVNFq_gpejHnXqke9t7ulL8GpyysztaQ7ggp61IK9otG9vnM7r37OZkwws4GbfpeDcZNASSL3yJKye5AkjrmVinz2X_k1k1-iCODpKKQJS8SVM-Q9i4Eb7rjSymB1CdsIdUGqTZIfcJNn3CI1qe3-VOzM-3R-K_ACLyegd-2N9d3Dob358t0iv5s9scuzeHoV_4HlBWvBHz_cAGf-Ipcrt8RWPK_4gm9qQ</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>ROSSITER, STEPHEN J.</creator><creator>ZUBAID, AKBAR</creator><creator>MOHD-ADNAN, ADURA</creator><creator>STRUEBIG, MATTHEW J.</creator><creator>KUNZ, THOMAS H.</creator><creator>GOPAL, SUCHARITA</creator><creator>PETIT, ERIC J.</creator><creator>KINGSTON, TIGGA</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5058-5826</orcidid></search><sort><creationdate>201202</creationdate><title>Social organization and genetic structure: insights from codistributed bat populations</title><author>ROSSITER, STEPHEN J. ; ZUBAID, AKBAR ; MOHD-ADNAN, ADURA ; STRUEBIG, MATTHEW J. ; KUNZ, THOMAS H. ; GOPAL, SUCHARITA ; PETIT, ERIC J. ; KINGSTON, TIGGA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4991-f5439c9b5cddedb5e52e8cd0e72004b875ca0cdd1f4f3136fe541325c832a4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animal reproduction</topic><topic>Animals</topic><topic>Bats</topic><topic>Behavioral biology</topic><topic>Biodiversity and Ecology</topic><topic>Chiroptera - genetics</topic><topic>Ecological and Environmental Phenomena</topic><topic>Ecosystem</topic><topic>Environmental Sciences</topic><topic>Gene Flow</topic><topic>genetic autocorrelation</topic><topic>Habitats</topic><topic>Hierarchy, Social</topic><topic>Kerivoula</topic><topic>Microsatellite Repeats</topic><topic>microsatellites</topic><topic>monogamy</topic><topic>polygyny</topic><topic>Polymorphism</topic><topic>Population</topic><topic>Population genetics</topic><topic>Rhinolophus</topic><topic>roosting ecology</topic><topic>Sexual Behavior, Animal</topic><topic>Social Behavior</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROSSITER, STEPHEN J.</creatorcontrib><creatorcontrib>ZUBAID, AKBAR</creatorcontrib><creatorcontrib>MOHD-ADNAN, ADURA</creatorcontrib><creatorcontrib>STRUEBIG, MATTHEW J.</creatorcontrib><creatorcontrib>KUNZ, THOMAS H.</creatorcontrib><creatorcontrib>GOPAL, SUCHARITA</creatorcontrib><creatorcontrib>PETIT, ERIC J.</creatorcontrib><creatorcontrib>KINGSTON, TIGGA</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROSSITER, STEPHEN J.</au><au>ZUBAID, AKBAR</au><au>MOHD-ADNAN, ADURA</au><au>STRUEBIG, MATTHEW J.</au><au>KUNZ, THOMAS H.</au><au>GOPAL, SUCHARITA</au><au>PETIT, ERIC J.</au><au>KINGSTON, TIGGA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social organization and genetic structure: insights from codistributed bat populations</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2012-02</date><risdate>2012</risdate><volume>21</volume><issue>3</issue><spage>647</spage><epage>661</epage><pages>647-661</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>The impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding effects of history. We used microsatellites to compare genetic structure in seven bat species with contrasting patterns of roosting ecology and social organization, all of which are codistributed in an ancient forest habitat that has been exceptionally buffered from radical habitat shifts. Over one thousand individuals were captured at foraging sites and genotyped at polymorphic microsatellite loci. Analyses of spatially explicit genotype data revealed interspecies differences in the extent of movement and gene flow and genetic structure across continuous intact forest. Highest positive genetic structure was observed in tree‐roosting taxa that roost either alone or in small groups. By comparison, a complete absence of genetic autocorrelation was noted in the cave‐roosting colonial species across the study area. Our results thus reveal measurable interspecies differences in the natural limits of gene flow in an unmodified habitat, which we attribute to contrasting roosting ecology and social organization. The consequences of ecology and behaviour for gene flow have important implications for conservation. In particular, tree‐roosting species characterized by lower vagility and thus gene flow will be disproportionally impacted by landscape‐scale forest clearance and habitat fragmentation, which are prevalent in the study region. Our method also highlights the usefulness of rapid sampling of foraging bats for assaying genetic structure, particularly where roosting sites are not always known.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22168272</pmid><doi>10.1111/j.1365-294X.2011.05391.x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5058-5826</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2012-02, Vol.21 (3), p.647-661 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00686952v1 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animal reproduction Animals Bats Behavioral biology Biodiversity and Ecology Chiroptera - genetics Ecological and Environmental Phenomena Ecosystem Environmental Sciences Gene Flow genetic autocorrelation Habitats Hierarchy, Social Kerivoula Microsatellite Repeats microsatellites monogamy polygyny Polymorphism Population Population genetics Rhinolophus roosting ecology Sexual Behavior, Animal Social Behavior Species Specificity |
title | Social organization and genetic structure: insights from codistributed bat populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20organization%20and%20genetic%20structure:%20insights%20from%20codistributed%20bat%20populations&rft.jtitle=Molecular%20ecology&rft.au=ROSSITER,%20STEPHEN%20J.&rft.date=2012-02&rft.volume=21&rft.issue=3&rft.spage=647&rft.epage=661&rft.pages=647-661&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/j.1365-294X.2011.05391.x&rft_dat=%3Cproquest_hal_p%3E922215692%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915496341&rft_id=info:pmid/22168272&rfr_iscdi=true |