A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures

In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2011-04, Vol.200 (17), p.1637-1648
Hauptverfasser: Guilleminot, J., Noshadravan, A., Soize, C., Ghanem, R.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1648
container_issue 17
container_start_page 1637
container_title Computer methods in applied mechanics and engineering
container_volume 200
creator Guilleminot, J.
Noshadravan, A.
Soize, C.
Ghanem, R.G.
description In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.
doi_str_mv 10.1016/j.cma.2011.01.016
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00684305v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782511000314</els_id><sourcerecordid>869839008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1poNskPyA3XUrpwZuRZMsSPS2hbQILvbRnIctjokW2XElO2X9fmQ05VgwINN-8Qe9V1R2FPQUq7k97O5k9A0r3sJV4V-2o7FTNKJfvqx1A09adZO2H6mNKJyhHUrar1gNZYuhN77xL2VkyhQE9GUMkfVjnAQeC3mwdl88k45xKJ5p5CBMZHfohkb8uPxOzLN5Zk12YSQ5kCf5s4zll472bkUzOxpByXG1eI6ab6mo0PuHt631d_f7-7dfDY338-ePp4XCsbcNFrhUI3gjGQQ1j00lsARUw0feitygkjF2veKeg6aCzPVjGBReNtKoDYRo28uvqy0X32Xi9RDeZeNbBOP14OOrtDUDIhkP7Qgv7-cIWP_6smLKeXLLovZkxrElLoSRXxbZC0gu5_SlFHN-kKegtDX3SJQ29paFhK1FmPr2qm2SNH4uF1qW3QcZVx1vJCvf1wmGx5cVh1Mk6nC0OLqLNegjuP1v-AX5uoCc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869839008</pqid></control><display><type>article</type><title>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</title><source>Elsevier ScienceDirect Journals</source><creator>Guilleminot, J. ; Noshadravan, A. ; Soize, C. ; Ghanem, R.G.</creator><creatorcontrib>Guilleminot, J. ; Noshadravan, A. ; Soize, C. ; Ghanem, R.G.</creatorcontrib><description>In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2011.01.016</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Apparent elasticity tensor ; Construction ; Elasticity ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heterogeneous materials ; Mathematical analysis ; Mathematical models ; Mathematics ; Mechanics ; Mesoscale modeling ; Micromechanics ; Microstructure ; Non-Gaussian ; Physics ; Probabilistic methods ; Probability ; Probability theory ; Random field ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Tensors</subject><ispartof>Computer methods in applied mechanics and engineering, 2011-04, Vol.200 (17), p.1637-1648</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</citedby><cites>FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</cites><orcidid>0000-0002-1083-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782511000314$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23973582$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00684305$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guilleminot, J.</creatorcontrib><creatorcontrib>Noshadravan, A.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Ghanem, R.G.</creatorcontrib><title>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.</description><subject>Apparent elasticity tensor</subject><subject>Construction</subject><subject>Elasticity</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heterogeneous materials</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Mesoscale modeling</subject><subject>Micromechanics</subject><subject>Microstructure</subject><subject>Non-Gaussian</subject><subject>Physics</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Random field</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Tensors</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhU1poNskPyA3XUrpwZuRZMsSPS2hbQILvbRnIctjokW2XElO2X9fmQ05VgwINN-8Qe9V1R2FPQUq7k97O5k9A0r3sJV4V-2o7FTNKJfvqx1A09adZO2H6mNKJyhHUrar1gNZYuhN77xL2VkyhQE9GUMkfVjnAQeC3mwdl88k45xKJ5p5CBMZHfohkb8uPxOzLN5Zk12YSQ5kCf5s4zll472bkUzOxpByXG1eI6ab6mo0PuHt631d_f7-7dfDY338-ePp4XCsbcNFrhUI3gjGQQ1j00lsARUw0feitygkjF2veKeg6aCzPVjGBReNtKoDYRo28uvqy0X32Xi9RDeZeNbBOP14OOrtDUDIhkP7Qgv7-cIWP_6smLKeXLLovZkxrElLoSRXxbZC0gu5_SlFHN-kKegtDX3SJQ29paFhK1FmPr2qm2SNH4uF1qW3QcZVx1vJCvf1wmGx5cVh1Mk6nC0OLqLNegjuP1v-AX5uoCc</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Guilleminot, J.</creator><creator>Noshadravan, A.</creator><creator>Soize, C.</creator><creator>Ghanem, R.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid></search><sort><creationdate>20110401</creationdate><title>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</title><author>Guilleminot, J. ; Noshadravan, A. ; Soize, C. ; Ghanem, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Apparent elasticity tensor</topic><topic>Construction</topic><topic>Elasticity</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heterogeneous materials</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Mesoscale modeling</topic><topic>Micromechanics</topic><topic>Microstructure</topic><topic>Non-Gaussian</topic><topic>Physics</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Random field</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guilleminot, J.</creatorcontrib><creatorcontrib>Noshadravan, A.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Ghanem, R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guilleminot, J.</au><au>Noshadravan, A.</au><au>Soize, C.</au><au>Ghanem, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>200</volume><issue>17</issue><spage>1637</spage><epage>1648</epage><pages>1637-1648</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2011.01.016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2011-04, Vol.200 (17), p.1637-1648
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_00684305v1
source Elsevier ScienceDirect Journals
subjects Apparent elasticity tensor
Construction
Elasticity
Engineering Sciences
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heterogeneous materials
Mathematical analysis
Mathematical models
Mathematics
Mechanics
Mesoscale modeling
Micromechanics
Microstructure
Non-Gaussian
Physics
Probabilistic methods
Probability
Probability theory
Random field
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Tensors
title A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20model%20for%20bounded%20elasticity%20tensor%20random%20fields%20with%20application%20to%20polycrystalline%20microstructures&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Guilleminot,%20J.&rft.date=2011-04-01&rft.volume=200&rft.issue=17&rft.spage=1637&rft.epage=1648&rft.pages=1637-1648&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2011.01.016&rft_dat=%3Cproquest_hal_p%3E869839008%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869839008&rft_id=info:pmid/&rft_els_id=S0045782511000314&rfr_iscdi=true