A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures
In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall,...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2011-04, Vol.200 (17), p.1637-1648 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1648 |
---|---|
container_issue | 17 |
container_start_page | 1637 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 200 |
creator | Guilleminot, J. Noshadravan, A. Soize, C. Ghanem, R.G. |
description | In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application. |
doi_str_mv | 10.1016/j.cma.2011.01.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00684305v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782511000314</els_id><sourcerecordid>869839008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1poNskPyA3XUrpwZuRZMsSPS2hbQILvbRnIctjokW2XElO2X9fmQ05VgwINN-8Qe9V1R2FPQUq7k97O5k9A0r3sJV4V-2o7FTNKJfvqx1A09adZO2H6mNKJyhHUrar1gNZYuhN77xL2VkyhQE9GUMkfVjnAQeC3mwdl88k45xKJ5p5CBMZHfohkb8uPxOzLN5Zk12YSQ5kCf5s4zll472bkUzOxpByXG1eI6ab6mo0PuHt631d_f7-7dfDY338-ePp4XCsbcNFrhUI3gjGQQ1j00lsARUw0feitygkjF2veKeg6aCzPVjGBReNtKoDYRo28uvqy0X32Xi9RDeZeNbBOP14OOrtDUDIhkP7Qgv7-cIWP_6smLKeXLLovZkxrElLoSRXxbZC0gu5_SlFHN-kKegtDX3SJQ29paFhK1FmPr2qm2SNH4uF1qW3QcZVx1vJCvf1wmGx5cVh1Mk6nC0OLqLNegjuP1v-AX5uoCc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869839008</pqid></control><display><type>article</type><title>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</title><source>Elsevier ScienceDirect Journals</source><creator>Guilleminot, J. ; Noshadravan, A. ; Soize, C. ; Ghanem, R.G.</creator><creatorcontrib>Guilleminot, J. ; Noshadravan, A. ; Soize, C. ; Ghanem, R.G.</creatorcontrib><description>In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2011.01.016</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Apparent elasticity tensor ; Construction ; Elasticity ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heterogeneous materials ; Mathematical analysis ; Mathematical models ; Mathematics ; Mechanics ; Mesoscale modeling ; Micromechanics ; Microstructure ; Non-Gaussian ; Physics ; Probabilistic methods ; Probability ; Probability theory ; Random field ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Tensors</subject><ispartof>Computer methods in applied mechanics and engineering, 2011-04, Vol.200 (17), p.1637-1648</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</citedby><cites>FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</cites><orcidid>0000-0002-1083-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782511000314$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23973582$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00684305$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guilleminot, J.</creatorcontrib><creatorcontrib>Noshadravan, A.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Ghanem, R.G.</creatorcontrib><title>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.</description><subject>Apparent elasticity tensor</subject><subject>Construction</subject><subject>Elasticity</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heterogeneous materials</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Mesoscale modeling</subject><subject>Micromechanics</subject><subject>Microstructure</subject><subject>Non-Gaussian</subject><subject>Physics</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Random field</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Tensors</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhU1poNskPyA3XUrpwZuRZMsSPS2hbQILvbRnIctjokW2XElO2X9fmQ05VgwINN-8Qe9V1R2FPQUq7k97O5k9A0r3sJV4V-2o7FTNKJfvqx1A09adZO2H6mNKJyhHUrar1gNZYuhN77xL2VkyhQE9GUMkfVjnAQeC3mwdl88k45xKJ5p5CBMZHfohkb8uPxOzLN5Zk12YSQ5kCf5s4zll472bkUzOxpByXG1eI6ab6mo0PuHt631d_f7-7dfDY338-ePp4XCsbcNFrhUI3gjGQQ1j00lsARUw0feitygkjF2veKeg6aCzPVjGBReNtKoDYRo28uvqy0X32Xi9RDeZeNbBOP14OOrtDUDIhkP7Qgv7-cIWP_6smLKeXLLovZkxrElLoSRXxbZC0gu5_SlFHN-kKegtDX3SJQ29paFhK1FmPr2qm2SNH4uF1qW3QcZVx1vJCvf1wmGx5cVh1Mk6nC0OLqLNegjuP1v-AX5uoCc</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Guilleminot, J.</creator><creator>Noshadravan, A.</creator><creator>Soize, C.</creator><creator>Ghanem, R.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid></search><sort><creationdate>20110401</creationdate><title>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</title><author>Guilleminot, J. ; Noshadravan, A. ; Soize, C. ; Ghanem, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9063462309df478e50e9026bb6bce680f7b937904707cb0c2363648c9706a42f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Apparent elasticity tensor</topic><topic>Construction</topic><topic>Elasticity</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heterogeneous materials</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Mesoscale modeling</topic><topic>Micromechanics</topic><topic>Microstructure</topic><topic>Non-Gaussian</topic><topic>Physics</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Random field</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guilleminot, J.</creatorcontrib><creatorcontrib>Noshadravan, A.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Ghanem, R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guilleminot, J.</au><au>Noshadravan, A.</au><au>Soize, C.</au><au>Ghanem, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>200</volume><issue>17</issue><spage>1637</spage><epage>1648</epage><pages>1637-1648</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper, we address the construction of a prior stochastic model for non-Gaussian deterministically-bounded positive-definite matrix-valued random fields in the context of mesoscale modeling of heterogeneous elastic microstructures. We first introduce the micromechanical framework and recall, in particular, Huet’s Partition Theorem. Based on the latter, we discuss the nature of hierarchical bounds and define, under some given assumptions, deterministic bounds for the apparent elasticity tensor. Having recourse to the Maximum Entropy Principle under the constraints defined by the available information, we then introduce two random matrix models. It is shown that an alternative formulation of the boundedness constraints further allows constructing a probabilistic model for deterministically-bounded positive-definite matrix-valued random fields. Such a construction is presented and relies on a class of random fields previously defined. We finally exemplify the overall methodology considering an experimental database obtained from EBSD measurements and provide a simple numerical application.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2011.01.016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2011-04, Vol.200 (17), p.1637-1648 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00684305v1 |
source | Elsevier ScienceDirect Journals |
subjects | Apparent elasticity tensor Construction Elasticity Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Heterogeneous materials Mathematical analysis Mathematical models Mathematics Mechanics Mesoscale modeling Micromechanics Microstructure Non-Gaussian Physics Probabilistic methods Probability Probability theory Random field Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Tensors |
title | A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20model%20for%20bounded%20elasticity%20tensor%20random%20fields%20with%20application%20to%20polycrystalline%20microstructures&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Guilleminot,%20J.&rft.date=2011-04-01&rft.volume=200&rft.issue=17&rft.spage=1637&rft.epage=1648&rft.pages=1637-1648&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2011.01.016&rft_dat=%3Cproquest_hal_p%3E869839008%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869839008&rft_id=info:pmid/&rft_els_id=S0045782511000314&rfr_iscdi=true |