Structured Matrix Based Methods for Approximate Polynomial GCD

Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Boito, Paola
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 15
creator Boito, Paola
description Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree.
doi_str_mv 10.1007/978-88-7642-381-9
format Book
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00683746v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC973807</sourcerecordid><originalsourceid>FETCH-LOGICAL-a43771-1765239ca99a6cdec178c0c23aa6e2439a2857dc43342fb7251dd8b8758b97693</originalsourceid><addsrcrecordid>eNpVkEtLxDAUhSOiOI7zA9wVF4KLOk3SJjcbYaxPGFFQxF1I04xTrc2YdNT596bWB2YT7uE7NycHoV2cHOIk4WPBIQaIOUtJTAHHYg2NggbQKUEQ62j7Z0geNtEAEkxZSlO2hUbePyXhsAwEYQN0dNu6pW6XzpTRlWpd9REdK98Npp3b0kcz66LJYuHsR_WiWhPd2HrV2JdK1dF5frKDNmaq9mb0fQ_R_dnpXX4RT6_PL_PJNFYp5RzHmLOMUKGVEIrp0mjMQSeaUKWYISkVikDGS51SmpJZwUmGyxIK4BkUgjNBh-igXzxXtVy4kMWtpFWVvJhMZaeFLwHlKXvDf6zyz-bdz23devlWm8LaZy__NRXYcc_6sLR5NE72FE5k13VHSwDZ8TIYZOfY7x2hk9el8a38WqxN07qQ4_Q4Fzz0zgO414O6Uk1pf1P3IyXAw_ufgF-Emg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC973807</pqid></control><display><type>book</type><title>Structured Matrix Based Methods for Approximate Polynomial GCD</title><source>Springer Books</source><creator>Boito, Paola</creator><creatorcontrib>Boito, Paola</creatorcontrib><description>Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree.</description><edition>1. Aufl.</edition><identifier>ISBN: 887642380X</identifier><identifier>ISBN: 9788876423802</identifier><identifier>EISBN: 9788876423819</identifier><identifier>EISBN: 8876423818</identifier><identifier>DOI: 10.1007/978-88-7642-381-9</identifier><identifier>OCLC: 801364346</identifier><language>eng</language><publisher>Pisa: Springer-Verlag</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Polynomials</subject><creationdate>2011</creationdate><tpages>207</tpages><format>207</format><rights>Scuola Normale Superiore Pisa 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3559-393X</orcidid><relation>Tesi/Theses</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-88-7642-381-9</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-88-7642-381-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,307,308,781,785,787,788,886,27930,38260,42516</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00683746$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boito, Paola</creatorcontrib><title>Structured Matrix Based Methods for Approximate Polynomial GCD</title><description>Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><isbn>887642380X</isbn><isbn>9788876423802</isbn><isbn>9788876423819</isbn><isbn>8876423818</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2011</creationdate><recordtype>book</recordtype><recordid>eNpVkEtLxDAUhSOiOI7zA9wVF4KLOk3SJjcbYaxPGFFQxF1I04xTrc2YdNT596bWB2YT7uE7NycHoV2cHOIk4WPBIQaIOUtJTAHHYg2NggbQKUEQ62j7Z0geNtEAEkxZSlO2hUbePyXhsAwEYQN0dNu6pW6XzpTRlWpd9REdK98Npp3b0kcz66LJYuHsR_WiWhPd2HrV2JdK1dF5frKDNmaq9mb0fQ_R_dnpXX4RT6_PL_PJNFYp5RzHmLOMUKGVEIrp0mjMQSeaUKWYISkVikDGS51SmpJZwUmGyxIK4BkUgjNBh-igXzxXtVy4kMWtpFWVvJhMZaeFLwHlKXvDf6zyz-bdz23devlWm8LaZy__NRXYcc_6sLR5NE72FE5k13VHSwDZ8TIYZOfY7x2hk9el8a38WqxN07qQ4_Q4Fzz0zgO414O6Uk1pf1P3IyXAw_ufgF-Emg</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Boito, Paola</creator><general>Springer-Verlag</general><general>Scuola Normale Superiore</general><general>Edizioni della Normale</general><general>Edizioni della Normale, Pisa</general><scope>08O</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3559-393X</orcidid></search><sort><creationdate>2011</creationdate><title>Structured Matrix Based Methods for Approximate Polynomial GCD</title><author>Boito, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a43771-1765239ca99a6cdec178c0c23aa6e2439a2857dc43342fb7251dd8b8758b97693</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Boito, Paola</creatorcontrib><collection>ciando eBooks</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boito, Paola</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Structured Matrix Based Methods for Approximate Polynomial GCD</btitle><seriestitle>Tesi/Theses</seriestitle><date>2011</date><risdate>2011</risdate><volume>15</volume><isbn>887642380X</isbn><isbn>9788876423802</isbn><eisbn>9788876423819</eisbn><eisbn>8876423818</eisbn><abstract>Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree.</abstract><cop>Pisa</cop><pub>Springer-Verlag</pub><doi>10.1007/978-88-7642-381-9</doi><oclcid>801364346</oclcid><tpages>207</tpages><edition>1. Aufl.</edition><orcidid>https://orcid.org/0000-0002-3559-393X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 887642380X
ispartof
issn
language eng
recordid cdi_hal_primary_oai_HAL_hal_00683746v1
source Springer Books
subjects Algebra
Mathematics
Mathematics and Statistics
Numerical Analysis
Polynomials
title Structured Matrix Based Methods for Approximate Polynomial GCD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Structured%20Matrix%20Based%20Methods%20for%20Approximate%20Polynomial%20GCD&rft.au=Boito,%20Paola&rft.date=2011&rft.volume=15&rft.isbn=887642380X&rft.isbn_list=9788876423802&rft_id=info:doi/10.1007/978-88-7642-381-9&rft_dat=%3Cproquest_hal_p%3EEBC973807%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9788876423819&rft.eisbn_list=8876423818&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC973807&rft_id=info:pmid/&rfr_iscdi=true