Structural and mechanical properties of a-C:H and Si doped a-C:H thin films grown by LF-PECVD

Amorphous hydrogenated carbon (a-C:H) and Silicon doped a-C:H (Si-DLC) and a-C:H/Si-DLC multilayered films were deposited by low frequency plasma enhanced chemical vapour deposition (LF PECVD). Influences of plasma power and substrate temperature were first investigated on structural and mechanical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2010-01, Vol.204 (9), p.1339-1346
Hauptverfasser: Chouquet, C., Gerbaud, G., Bardet, M., Barrat, S., Billard, A., Sanchette, F., Ducros, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1346
container_issue 9
container_start_page 1339
container_title Surface & coatings technology
container_volume 204
creator Chouquet, C.
Gerbaud, G.
Bardet, M.
Barrat, S.
Billard, A.
Sanchette, F.
Ducros, C.
description Amorphous hydrogenated carbon (a-C:H) and Silicon doped a-C:H (Si-DLC) and a-C:H/Si-DLC multilayered films were deposited by low frequency plasma enhanced chemical vapour deposition (LF PECVD). Influences of plasma power and substrate temperature were first investigated on structural and mechanical properties of a-C:H films elaborated from cyclohexane–hydrogen mixtures. The hybridation ratio, Csp 2/Csp 3, was evaluated by means of Raman spectroscopy and High Resolution Solid-State Nuclear Magnetic Resonance (SSNMR). Stress measurements were realised by the substrate bending method. Nanoindentation and ball on disk tribometer were used in order to determine nanohardness, Young modulus and friction behaviours respectively. Si-DLC films were then elaborated by incorporating tetramethylsilane in the previous gas mixtures. Those layers revealed a significantly reduced stress level comparing to a-C:H films without a dramatic loss of mechanical properties. Finally a-C:H and Si-DLC layers were associated to elaborate a multilayered system which presents mechanical and tribological properties equivalent to an a-C:H monolayer properties while maintaining a lower residual stress level.
doi_str_mv 10.1016/j.surfcoat.2009.09.016
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00677652v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897209007154</els_id><sourcerecordid>S0257897209007154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-2c5f7db5c971cfcb62de5b649e2c9bafe8fe797035e21889ebb1494a8d764c103</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4FyYsPPrQmaZo0Pjnm5oSCwtQ3CWmauIytHUk32b-3XaevwoXLPfec-3EAuMYoxgizu2Uctt7qWjUxQUjEXWB2AgY44yJKEspPwQCRlEeZ4OQcXISwRAhhLugAfM4bv9XN1qsVVFUJ10YvVOV0W258vTG-cSbA2kIVje9nB8rcwbLtlEeoWbgKWrdaB_jl6-8KFnuYT6PXyfjj8RKcWbUK5uqYh-B9Onkbz6L85el5PMojTSlpIqJTy8si1YJjbXXBSGnSglFhiBaFsiazhguOktQQnGXCFAWmgqqs5IxqjJIhuO3nLtRKbrxbK7-XtXJyNsplhyHEOGcp2eGWy3qu9nUI3tg_AUayM1Qu5a-hsjNUdoFZK7zphRsVWn-sV5V24U9NCOUJPxzz0PNM-_HOGS-DdqbSpnTe6EaWtftv1Q-z843f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural and mechanical properties of a-C:H and Si doped a-C:H thin films grown by LF-PECVD</title><source>Elsevier ScienceDirect Journals</source><creator>Chouquet, C. ; Gerbaud, G. ; Bardet, M. ; Barrat, S. ; Billard, A. ; Sanchette, F. ; Ducros, C.</creator><creatorcontrib>Chouquet, C. ; Gerbaud, G. ; Bardet, M. ; Barrat, S. ; Billard, A. ; Sanchette, F. ; Ducros, C.</creatorcontrib><description>Amorphous hydrogenated carbon (a-C:H) and Silicon doped a-C:H (Si-DLC) and a-C:H/Si-DLC multilayered films were deposited by low frequency plasma enhanced chemical vapour deposition (LF PECVD). Influences of plasma power and substrate temperature were first investigated on structural and mechanical properties of a-C:H films elaborated from cyclohexane–hydrogen mixtures. The hybridation ratio, Csp 2/Csp 3, was evaluated by means of Raman spectroscopy and High Resolution Solid-State Nuclear Magnetic Resonance (SSNMR). Stress measurements were realised by the substrate bending method. Nanoindentation and ball on disk tribometer were used in order to determine nanohardness, Young modulus and friction behaviours respectively. Si-DLC films were then elaborated by incorporating tetramethylsilane in the previous gas mixtures. Those layers revealed a significantly reduced stress level comparing to a-C:H films without a dramatic loss of mechanical properties. Finally a-C:H and Si-DLC layers were associated to elaborate a multilayered system which presents mechanical and tribological properties equivalent to an a-C:H monolayer properties while maintaining a lower residual stress level.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2009.09.016</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>a-C:H ; a-C:H/Si-DLC multilayer ; Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Environmental Sciences ; Exact sciences and technology ; Friction coefficient ; Low frequency PECVD ; Materials science ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Sciences of the Universe ; Si-DLC ; Surface treatments</subject><ispartof>Surface &amp; coatings technology, 2010-01, Vol.204 (9), p.1339-1346</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-2c5f7db5c971cfcb62de5b649e2c9bafe8fe797035e21889ebb1494a8d764c103</citedby><cites>FETCH-LOGICAL-c442t-2c5f7db5c971cfcb62de5b649e2c9bafe8fe797035e21889ebb1494a8d764c103</cites><orcidid>0000-0002-3832-388X ; 0000-0002-4665-1891 ; 0000-0003-2232-0868 ; 0000-0002-5628-2292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2009.09.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22473710$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00677652$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chouquet, C.</creatorcontrib><creatorcontrib>Gerbaud, G.</creatorcontrib><creatorcontrib>Bardet, M.</creatorcontrib><creatorcontrib>Barrat, S.</creatorcontrib><creatorcontrib>Billard, A.</creatorcontrib><creatorcontrib>Sanchette, F.</creatorcontrib><creatorcontrib>Ducros, C.</creatorcontrib><title>Structural and mechanical properties of a-C:H and Si doped a-C:H thin films grown by LF-PECVD</title><title>Surface &amp; coatings technology</title><description>Amorphous hydrogenated carbon (a-C:H) and Silicon doped a-C:H (Si-DLC) and a-C:H/Si-DLC multilayered films were deposited by low frequency plasma enhanced chemical vapour deposition (LF PECVD). Influences of plasma power and substrate temperature were first investigated on structural and mechanical properties of a-C:H films elaborated from cyclohexane–hydrogen mixtures. The hybridation ratio, Csp 2/Csp 3, was evaluated by means of Raman spectroscopy and High Resolution Solid-State Nuclear Magnetic Resonance (SSNMR). Stress measurements were realised by the substrate bending method. Nanoindentation and ball on disk tribometer were used in order to determine nanohardness, Young modulus and friction behaviours respectively. Si-DLC films were then elaborated by incorporating tetramethylsilane in the previous gas mixtures. Those layers revealed a significantly reduced stress level comparing to a-C:H films without a dramatic loss of mechanical properties. Finally a-C:H and Si-DLC layers were associated to elaborate a multilayered system which presents mechanical and tribological properties equivalent to an a-C:H monolayer properties while maintaining a lower residual stress level.</description><subject>a-C:H</subject><subject>a-C:H/Si-DLC multilayer</subject><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Friction coefficient</subject><subject>Low frequency PECVD</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Si-DLC</subject><subject>Surface treatments</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4FyYsPPrQmaZo0Pjnm5oSCwtQ3CWmauIytHUk32b-3XaevwoXLPfec-3EAuMYoxgizu2Uctt7qWjUxQUjEXWB2AgY44yJKEspPwQCRlEeZ4OQcXISwRAhhLugAfM4bv9XN1qsVVFUJ10YvVOV0W258vTG-cSbA2kIVje9nB8rcwbLtlEeoWbgKWrdaB_jl6-8KFnuYT6PXyfjj8RKcWbUK5uqYh-B9Onkbz6L85el5PMojTSlpIqJTy8si1YJjbXXBSGnSglFhiBaFsiazhguOktQQnGXCFAWmgqqs5IxqjJIhuO3nLtRKbrxbK7-XtXJyNsplhyHEOGcp2eGWy3qu9nUI3tg_AUayM1Qu5a-hsjNUdoFZK7zphRsVWn-sV5V24U9NCOUJPxzz0PNM-_HOGS-DdqbSpnTe6EaWtftv1Q-z843f</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Chouquet, C.</creator><creator>Gerbaud, G.</creator><creator>Bardet, M.</creator><creator>Barrat, S.</creator><creator>Billard, A.</creator><creator>Sanchette, F.</creator><creator>Ducros, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3832-388X</orcidid><orcidid>https://orcid.org/0000-0002-4665-1891</orcidid><orcidid>https://orcid.org/0000-0003-2232-0868</orcidid><orcidid>https://orcid.org/0000-0002-5628-2292</orcidid></search><sort><creationdate>201001</creationdate><title>Structural and mechanical properties of a-C:H and Si doped a-C:H thin films grown by LF-PECVD</title><author>Chouquet, C. ; Gerbaud, G. ; Bardet, M. ; Barrat, S. ; Billard, A. ; Sanchette, F. ; Ducros, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-2c5f7db5c971cfcb62de5b649e2c9bafe8fe797035e21889ebb1494a8d764c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>a-C:H</topic><topic>a-C:H/Si-DLC multilayer</topic><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Friction coefficient</topic><topic>Low frequency PECVD</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Si-DLC</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chouquet, C.</creatorcontrib><creatorcontrib>Gerbaud, G.</creatorcontrib><creatorcontrib>Bardet, M.</creatorcontrib><creatorcontrib>Barrat, S.</creatorcontrib><creatorcontrib>Billard, A.</creatorcontrib><creatorcontrib>Sanchette, F.</creatorcontrib><creatorcontrib>Ducros, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chouquet, C.</au><au>Gerbaud, G.</au><au>Bardet, M.</au><au>Barrat, S.</au><au>Billard, A.</au><au>Sanchette, F.</au><au>Ducros, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and mechanical properties of a-C:H and Si doped a-C:H thin films grown by LF-PECVD</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2010-01</date><risdate>2010</risdate><volume>204</volume><issue>9</issue><spage>1339</spage><epage>1346</epage><pages>1339-1346</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Amorphous hydrogenated carbon (a-C:H) and Silicon doped a-C:H (Si-DLC) and a-C:H/Si-DLC multilayered films were deposited by low frequency plasma enhanced chemical vapour deposition (LF PECVD). Influences of plasma power and substrate temperature were first investigated on structural and mechanical properties of a-C:H films elaborated from cyclohexane–hydrogen mixtures. The hybridation ratio, Csp 2/Csp 3, was evaluated by means of Raman spectroscopy and High Resolution Solid-State Nuclear Magnetic Resonance (SSNMR). Stress measurements were realised by the substrate bending method. Nanoindentation and ball on disk tribometer were used in order to determine nanohardness, Young modulus and friction behaviours respectively. Si-DLC films were then elaborated by incorporating tetramethylsilane in the previous gas mixtures. Those layers revealed a significantly reduced stress level comparing to a-C:H films without a dramatic loss of mechanical properties. Finally a-C:H and Si-DLC layers were associated to elaborate a multilayered system which presents mechanical and tribological properties equivalent to an a-C:H monolayer properties while maintaining a lower residual stress level.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2009.09.016</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3832-388X</orcidid><orcidid>https://orcid.org/0000-0002-4665-1891</orcidid><orcidid>https://orcid.org/0000-0003-2232-0868</orcidid><orcidid>https://orcid.org/0000-0002-5628-2292</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2010-01, Vol.204 (9), p.1339-1346
issn 0257-8972
1879-3347
language eng
recordid cdi_hal_primary_oai_HAL_hal_00677652v1
source Elsevier ScienceDirect Journals
subjects a-C:H
a-C:H/Si-DLC multilayer
Applied sciences
Cross-disciplinary physics: materials science
rheology
Environmental Sciences
Exact sciences and technology
Friction coefficient
Low frequency PECVD
Materials science
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Methods of deposition of films and coatings
film growth and epitaxy
Physics
Sciences of the Universe
Si-DLC
Surface treatments
title Structural and mechanical properties of a-C:H and Si doped a-C:H thin films grown by LF-PECVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20mechanical%20properties%20of%20a-C:H%20and%20Si%20doped%20a-C:H%20thin%20films%20grown%20by%20LF-PECVD&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Chouquet,%20C.&rft.date=2010-01&rft.volume=204&rft.issue=9&rft.spage=1339&rft.epage=1346&rft.pages=1339-1346&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2009.09.016&rft_dat=%3Celsevier_hal_p%3ES0257897209007154%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0257897209007154&rfr_iscdi=true