Quenched central limit theorem for random walks with a spectral gap

Let G be a semi-group of measure preserving transformations of a probability space (X, B, m) and let mu be a probability measure on G. We prove a quenched central limit theorem for functions in L(0)(p)(m), p > 2, when the spectral gap condition holds for the diagonal action of G on (X x X, m circ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2011-07, Vol.349 (13-14), p.801-805
Hauptverfasser: Conze, Jean-Pierre, Le Borgne, Stéphane
Format: Artikel
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a semi-group of measure preserving transformations of a probability space (X, B, m) and let mu be a probability measure on G. We prove a quenched central limit theorem for functions in L(0)(p)(m), p > 2, when the spectral gap condition holds for the diagonal action of G on (X x X, m circle times m). (C) 2011 Academie des sciences.
ISSN:1631-073X
1778-3569
DOI:10.1016/j.crma.2011.06.017