Quenched central limit theorem for random walks with a spectral gap
Let G be a semi-group of measure preserving transformations of a probability space (X, B, m) and let mu be a probability measure on G. We prove a quenched central limit theorem for functions in L(0)(p)(m), p > 2, when the spectral gap condition holds for the diagonal action of G on (X x X, m circ...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2011-07, Vol.349 (13-14), p.801-805 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a semi-group of measure preserving transformations of a probability space (X, B, m) and let mu be a probability measure on G. We prove a quenched central limit theorem for functions in L(0)(p)(m), p > 2, when the spectral gap condition holds for the diagonal action of G on (X x X, m circle times m). (C) 2011 Academie des sciences. |
---|---|
ISSN: | 1631-073X 1778-3569 |
DOI: | 10.1016/j.crma.2011.06.017 |