Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale

Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epidemiology (Cambridge, Mass.) Mass.), 2009-03, Vol.20 (2), p.223-230
Hauptverfasser: Havard, Sabrina, Deguen, Séverine, Zmirou-Navier, Denis, Schillinger, Charles, Bard, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 2
container_start_page 223
container_title Epidemiology (Cambridge, Mass.)
container_volume 20
creator Havard, Sabrina
Deguen, Séverine
Zmirou-Navier, Denis
Schillinger, Charles
Bard, Denis
description Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health.
doi_str_mv 10.1097/EDE.0b013e31819464e1
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00672331v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20485693</jstor_id><sourcerecordid>20485693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4163-c438b577b8887e271fa14c9d94be40e3a1ef46c577161dba3ec9f7c60e27d03</originalsourceid><addsrcrecordid>eNpdkd1u1DAQhSMEoqXwBoB8A1IvUjyx82PuopJSpJVApPeR40y0Lk68tZ1W-w48NI521ZW4scej7xyPfZLkPdAroKL80nxrrmhPgSGDCgQvOMKL5BxyBmnOq_JlrCnnKRMVO0veeH9PKZQM8tfJGQjgGRTsPPl75-Q4apX-RiMDDqTWjvyyxixB25nIeSCtVdqisrOdtCJtkGHxX0lN2p0MWhpSL8Eq69xqsGrasAx7EiypvUfvSTM_amfnCecQ6eZh0WFPVm_STtKYtHYYSyUNvk1ejdJ4fHfcL5L2prm7vk03P7__uK43qeJx6Liyqs_Lsq-qqsSshFECV2IQvEdOkUnAkRcqElDA0EuGSoylKmhkB8ouksuD61aabuf0JN2-s1J3t_WmW3uUFmXGGDxCZD8f2J2zDwv60E3aKzRGzmgX32WQCcHFasoPoHLWe4fjszPQbs2ri3l1_-cVZR-P_ks_4XASHQOKwKcjIH38otHJWWn_zGUAguWcne5_siag83_M8oSu26I0YRtfFLMveJVmlMZh4yldO6vsw0F274N1J1vKq7wQjP0Dd_G4CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21299490</pqid></control><display><type>article</type><title>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</title><source>Jstor Complete Legacy</source><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><creator>Havard, Sabrina ; Deguen, Séverine ; Zmirou-Navier, Denis ; Schillinger, Charles ; Bard, Denis</creator><creatorcontrib>Havard, Sabrina ; Deguen, Séverine ; Zmirou-Navier, Denis ; Schillinger, Charles ; Bard, Denis</creatorcontrib><description>Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health.</description><identifier>ISSN: 1044-3983</identifier><identifier>EISSN: 1531-5487</identifier><identifier>DOI: 10.1097/EDE.0b013e31819464e1</identifier><identifier>PMID: 19142163</identifier><language>eng</language><publisher>Philadelphia, PA: Lippincott Williams &amp; Wilkins</publisher><subject>Air Pollution ; Air Pollution - analysis ; Autocorrelation ; Biological and medical sciences ; Environmental Exposure ; Environmental justice ; Environmental pollution ; Epidemiology ; General aspects ; Germany ; Health Status Disparities ; Humans ; Life Sciences ; Medical sciences ; Metropolitan areas ; Miscellaneous ; Nitric Oxide ; Nitric Oxide - analysis ; Pollutant emissions ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Santé publique et épidémiologie ; Small-Area Analysis ; Social Class ; Socioeconomic status ; Socioeconomics ; Spacial Epidemiology ; Spatial models ; Traffic estimation ; Vehicle Emissions</subject><ispartof>Epidemiology (Cambridge, Mass.), 2009-03, Vol.20 (2), p.223-230</ispartof><rights>Copyright 2009 Lippincott Williams &amp; Wilkins, Inc.</rights><rights>2009 Lippincott Williams &amp; Wilkins, Inc.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4163-c438b577b8887e271fa14c9d94be40e3a1ef46c577161dba3ec9f7c60e27d03</cites><orcidid>0000-0002-9872-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20485693$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20485693$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21193543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19142163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00672331$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Havard, Sabrina</creatorcontrib><creatorcontrib>Deguen, Séverine</creatorcontrib><creatorcontrib>Zmirou-Navier, Denis</creatorcontrib><creatorcontrib>Schillinger, Charles</creatorcontrib><creatorcontrib>Bard, Denis</creatorcontrib><title>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</title><title>Epidemiology (Cambridge, Mass.)</title><addtitle>Epidemiology</addtitle><description>Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health.</description><subject>Air Pollution</subject><subject>Air Pollution - analysis</subject><subject>Autocorrelation</subject><subject>Biological and medical sciences</subject><subject>Environmental Exposure</subject><subject>Environmental justice</subject><subject>Environmental pollution</subject><subject>Epidemiology</subject><subject>General aspects</subject><subject>Germany</subject><subject>Health Status Disparities</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Medical sciences</subject><subject>Metropolitan areas</subject><subject>Miscellaneous</subject><subject>Nitric Oxide</subject><subject>Nitric Oxide - analysis</subject><subject>Pollutant emissions</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Santé publique et épidémiologie</subject><subject>Small-Area Analysis</subject><subject>Social Class</subject><subject>Socioeconomic status</subject><subject>Socioeconomics</subject><subject>Spacial Epidemiology</subject><subject>Spatial models</subject><subject>Traffic estimation</subject><subject>Vehicle Emissions</subject><issn>1044-3983</issn><issn>1531-5487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd1u1DAQhSMEoqXwBoB8A1IvUjyx82PuopJSpJVApPeR40y0Lk68tZ1W-w48NI521ZW4scej7xyPfZLkPdAroKL80nxrrmhPgSGDCgQvOMKL5BxyBmnOq_JlrCnnKRMVO0veeH9PKZQM8tfJGQjgGRTsPPl75-Q4apX-RiMDDqTWjvyyxixB25nIeSCtVdqisrOdtCJtkGHxX0lN2p0MWhpSL8Eq69xqsGrasAx7EiypvUfvSTM_amfnCecQ6eZh0WFPVm_STtKYtHYYSyUNvk1ejdJ4fHfcL5L2prm7vk03P7__uK43qeJx6Liyqs_Lsq-qqsSshFECV2IQvEdOkUnAkRcqElDA0EuGSoylKmhkB8ouksuD61aabuf0JN2-s1J3t_WmW3uUFmXGGDxCZD8f2J2zDwv60E3aKzRGzmgX32WQCcHFasoPoHLWe4fjszPQbs2ri3l1_-cVZR-P_ks_4XASHQOKwKcjIH38otHJWWn_zGUAguWcne5_siag83_M8oSu26I0YRtfFLMveJVmlMZh4yldO6vsw0F274N1J1vKq7wQjP0Dd_G4CQ</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Havard, Sabrina</creator><creator>Deguen, Séverine</creator><creator>Zmirou-Navier, Denis</creator><creator>Schillinger, Charles</creator><creator>Bard, Denis</creator><general>Lippincott Williams &amp; Wilkins</general><general>Lippincott Williams &amp; Wilkins, Inc</general><general>Lippincott, Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>7U7</scope><scope>C1K</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9872-3690</orcidid></search><sort><creationdate>200903</creationdate><title>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</title><author>Havard, Sabrina ; Deguen, Séverine ; Zmirou-Navier, Denis ; Schillinger, Charles ; Bard, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4163-c438b577b8887e271fa14c9d94be40e3a1ef46c577161dba3ec9f7c60e27d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air Pollution</topic><topic>Air Pollution - analysis</topic><topic>Autocorrelation</topic><topic>Biological and medical sciences</topic><topic>Environmental Exposure</topic><topic>Environmental justice</topic><topic>Environmental pollution</topic><topic>Epidemiology</topic><topic>General aspects</topic><topic>Germany</topic><topic>Health Status Disparities</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Medical sciences</topic><topic>Metropolitan areas</topic><topic>Miscellaneous</topic><topic>Nitric Oxide</topic><topic>Nitric Oxide - analysis</topic><topic>Pollutant emissions</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Santé publique et épidémiologie</topic><topic>Small-Area Analysis</topic><topic>Social Class</topic><topic>Socioeconomic status</topic><topic>Socioeconomics</topic><topic>Spacial Epidemiology</topic><topic>Spatial models</topic><topic>Traffic estimation</topic><topic>Vehicle Emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Havard, Sabrina</creatorcontrib><creatorcontrib>Deguen, Séverine</creatorcontrib><creatorcontrib>Zmirou-Navier, Denis</creatorcontrib><creatorcontrib>Schillinger, Charles</creatorcontrib><creatorcontrib>Bard, Denis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Epidemiology (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Havard, Sabrina</au><au>Deguen, Séverine</au><au>Zmirou-Navier, Denis</au><au>Schillinger, Charles</au><au>Bard, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</atitle><jtitle>Epidemiology (Cambridge, Mass.)</jtitle><addtitle>Epidemiology</addtitle><date>2009-03</date><risdate>2009</risdate><volume>20</volume><issue>2</issue><spage>223</spage><epage>230</epage><pages>223-230</pages><issn>1044-3983</issn><eissn>1531-5487</eissn><abstract>Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health.</abstract><cop>Philadelphia, PA</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>19142163</pmid><doi>10.1097/EDE.0b013e31819464e1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9872-3690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1044-3983
ispartof Epidemiology (Cambridge, Mass.), 2009-03, Vol.20 (2), p.223-230
issn 1044-3983
1531-5487
language eng
recordid cdi_hal_primary_oai_HAL_hal_00672331v1
source Jstor Complete Legacy; Journals@Ovid Ovid Autoload; MEDLINE
subjects Air Pollution
Air Pollution - analysis
Autocorrelation
Biological and medical sciences
Environmental Exposure
Environmental justice
Environmental pollution
Epidemiology
General aspects
Germany
Health Status Disparities
Humans
Life Sciences
Medical sciences
Metropolitan areas
Miscellaneous
Nitric Oxide
Nitric Oxide - analysis
Pollutant emissions
Public health. Hygiene
Public health. Hygiene-occupational medicine
Santé publique et épidémiologie
Small-Area Analysis
Social Class
Socioeconomic status
Socioeconomics
Spacial Epidemiology
Spatial models
Traffic estimation
Vehicle Emissions
title Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic-Related%20Air%20Pollution%20and%20Socioeconomic%20Status:%20A%20Spatial%20Autocorrelation%20Study%20to%20Assess%20Environmental%20Equity%20on%20a%20Small-Area%20Scale&rft.jtitle=Epidemiology%20(Cambridge,%20Mass.)&rft.au=Havard,%20Sabrina&rft.date=2009-03&rft.volume=20&rft.issue=2&rft.spage=223&rft.epage=230&rft.pages=223-230&rft.issn=1044-3983&rft.eissn=1531-5487&rft_id=info:doi/10.1097/EDE.0b013e31819464e1&rft_dat=%3Cjstor_hal_p%3E20485693%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21299490&rft_id=info:pmid/19142163&rft_jstor_id=20485693&rfr_iscdi=true