Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale
Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the ass...
Gespeichert in:
Veröffentlicht in: | Epidemiology (Cambridge, Mass.) Mass.), 2009-03, Vol.20 (2), p.223-230 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 2 |
container_start_page | 223 |
container_title | Epidemiology (Cambridge, Mass.) |
container_volume | 20 |
creator | Havard, Sabrina Deguen, Séverine Zmirou-Navier, Denis Schillinger, Charles Bard, Denis |
description | Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health. |
doi_str_mv | 10.1097/EDE.0b013e31819464e1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00672331v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20485693</jstor_id><sourcerecordid>20485693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4163-c438b577b8887e271fa14c9d94be40e3a1ef46c577161dba3ec9f7c60e27d03</originalsourceid><addsrcrecordid>eNpdkd1u1DAQhSMEoqXwBoB8A1IvUjyx82PuopJSpJVApPeR40y0Lk68tZ1W-w48NI521ZW4scej7xyPfZLkPdAroKL80nxrrmhPgSGDCgQvOMKL5BxyBmnOq_JlrCnnKRMVO0veeH9PKZQM8tfJGQjgGRTsPPl75-Q4apX-RiMDDqTWjvyyxixB25nIeSCtVdqisrOdtCJtkGHxX0lN2p0MWhpSL8Eq69xqsGrasAx7EiypvUfvSTM_amfnCecQ6eZh0WFPVm_STtKYtHYYSyUNvk1ejdJ4fHfcL5L2prm7vk03P7__uK43qeJx6Liyqs_Lsq-qqsSshFECV2IQvEdOkUnAkRcqElDA0EuGSoylKmhkB8ouksuD61aabuf0JN2-s1J3t_WmW3uUFmXGGDxCZD8f2J2zDwv60E3aKzRGzmgX32WQCcHFasoPoHLWe4fjszPQbs2ri3l1_-cVZR-P_ks_4XASHQOKwKcjIH38otHJWWn_zGUAguWcne5_siag83_M8oSu26I0YRtfFLMveJVmlMZh4yldO6vsw0F274N1J1vKq7wQjP0Dd_G4CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21299490</pqid></control><display><type>article</type><title>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</title><source>Jstor Complete Legacy</source><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><creator>Havard, Sabrina ; Deguen, Séverine ; Zmirou-Navier, Denis ; Schillinger, Charles ; Bard, Denis</creator><creatorcontrib>Havard, Sabrina ; Deguen, Séverine ; Zmirou-Navier, Denis ; Schillinger, Charles ; Bard, Denis</creatorcontrib><description>Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health.</description><identifier>ISSN: 1044-3983</identifier><identifier>EISSN: 1531-5487</identifier><identifier>DOI: 10.1097/EDE.0b013e31819464e1</identifier><identifier>PMID: 19142163</identifier><language>eng</language><publisher>Philadelphia, PA: Lippincott Williams & Wilkins</publisher><subject>Air Pollution ; Air Pollution - analysis ; Autocorrelation ; Biological and medical sciences ; Environmental Exposure ; Environmental justice ; Environmental pollution ; Epidemiology ; General aspects ; Germany ; Health Status Disparities ; Humans ; Life Sciences ; Medical sciences ; Metropolitan areas ; Miscellaneous ; Nitric Oxide ; Nitric Oxide - analysis ; Pollutant emissions ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Santé publique et épidémiologie ; Small-Area Analysis ; Social Class ; Socioeconomic status ; Socioeconomics ; Spacial Epidemiology ; Spatial models ; Traffic estimation ; Vehicle Emissions</subject><ispartof>Epidemiology (Cambridge, Mass.), 2009-03, Vol.20 (2), p.223-230</ispartof><rights>Copyright 2009 Lippincott Williams & Wilkins, Inc.</rights><rights>2009 Lippincott Williams & Wilkins, Inc.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4163-c438b577b8887e271fa14c9d94be40e3a1ef46c577161dba3ec9f7c60e27d03</cites><orcidid>0000-0002-9872-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20485693$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20485693$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21193543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19142163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00672331$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Havard, Sabrina</creatorcontrib><creatorcontrib>Deguen, Séverine</creatorcontrib><creatorcontrib>Zmirou-Navier, Denis</creatorcontrib><creatorcontrib>Schillinger, Charles</creatorcontrib><creatorcontrib>Bard, Denis</creatorcontrib><title>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</title><title>Epidemiology (Cambridge, Mass.)</title><addtitle>Epidemiology</addtitle><description>Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health.</description><subject>Air Pollution</subject><subject>Air Pollution - analysis</subject><subject>Autocorrelation</subject><subject>Biological and medical sciences</subject><subject>Environmental Exposure</subject><subject>Environmental justice</subject><subject>Environmental pollution</subject><subject>Epidemiology</subject><subject>General aspects</subject><subject>Germany</subject><subject>Health Status Disparities</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Medical sciences</subject><subject>Metropolitan areas</subject><subject>Miscellaneous</subject><subject>Nitric Oxide</subject><subject>Nitric Oxide - analysis</subject><subject>Pollutant emissions</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Santé publique et épidémiologie</subject><subject>Small-Area Analysis</subject><subject>Social Class</subject><subject>Socioeconomic status</subject><subject>Socioeconomics</subject><subject>Spacial Epidemiology</subject><subject>Spatial models</subject><subject>Traffic estimation</subject><subject>Vehicle Emissions</subject><issn>1044-3983</issn><issn>1531-5487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd1u1DAQhSMEoqXwBoB8A1IvUjyx82PuopJSpJVApPeR40y0Lk68tZ1W-w48NI521ZW4scej7xyPfZLkPdAroKL80nxrrmhPgSGDCgQvOMKL5BxyBmnOq_JlrCnnKRMVO0veeH9PKZQM8tfJGQjgGRTsPPl75-Q4apX-RiMDDqTWjvyyxixB25nIeSCtVdqisrOdtCJtkGHxX0lN2p0MWhpSL8Eq69xqsGrasAx7EiypvUfvSTM_amfnCecQ6eZh0WFPVm_STtKYtHYYSyUNvk1ejdJ4fHfcL5L2prm7vk03P7__uK43qeJx6Liyqs_Lsq-qqsSshFECV2IQvEdOkUnAkRcqElDA0EuGSoylKmhkB8ouksuD61aabuf0JN2-s1J3t_WmW3uUFmXGGDxCZD8f2J2zDwv60E3aKzRGzmgX32WQCcHFasoPoHLWe4fjszPQbs2ri3l1_-cVZR-P_ks_4XASHQOKwKcjIH38otHJWWn_zGUAguWcne5_siag83_M8oSu26I0YRtfFLMveJVmlMZh4yldO6vsw0F274N1J1vKq7wQjP0Dd_G4CQ</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Havard, Sabrina</creator><creator>Deguen, Séverine</creator><creator>Zmirou-Navier, Denis</creator><creator>Schillinger, Charles</creator><creator>Bard, Denis</creator><general>Lippincott Williams & Wilkins</general><general>Lippincott Williams & Wilkins, Inc</general><general>Lippincott, Williams & Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>7U7</scope><scope>C1K</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9872-3690</orcidid></search><sort><creationdate>200903</creationdate><title>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</title><author>Havard, Sabrina ; Deguen, Séverine ; Zmirou-Navier, Denis ; Schillinger, Charles ; Bard, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4163-c438b577b8887e271fa14c9d94be40e3a1ef46c577161dba3ec9f7c60e27d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Air Pollution</topic><topic>Air Pollution - analysis</topic><topic>Autocorrelation</topic><topic>Biological and medical sciences</topic><topic>Environmental Exposure</topic><topic>Environmental justice</topic><topic>Environmental pollution</topic><topic>Epidemiology</topic><topic>General aspects</topic><topic>Germany</topic><topic>Health Status Disparities</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Medical sciences</topic><topic>Metropolitan areas</topic><topic>Miscellaneous</topic><topic>Nitric Oxide</topic><topic>Nitric Oxide - analysis</topic><topic>Pollutant emissions</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Santé publique et épidémiologie</topic><topic>Small-Area Analysis</topic><topic>Social Class</topic><topic>Socioeconomic status</topic><topic>Socioeconomics</topic><topic>Spacial Epidemiology</topic><topic>Spatial models</topic><topic>Traffic estimation</topic><topic>Vehicle Emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Havard, Sabrina</creatorcontrib><creatorcontrib>Deguen, Séverine</creatorcontrib><creatorcontrib>Zmirou-Navier, Denis</creatorcontrib><creatorcontrib>Schillinger, Charles</creatorcontrib><creatorcontrib>Bard, Denis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Epidemiology (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Havard, Sabrina</au><au>Deguen, Séverine</au><au>Zmirou-Navier, Denis</au><au>Schillinger, Charles</au><au>Bard, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale</atitle><jtitle>Epidemiology (Cambridge, Mass.)</jtitle><addtitle>Epidemiology</addtitle><date>2009-03</date><risdate>2009</risdate><volume>20</volume><issue>2</issue><spage>223</spage><epage>230</epage><pages>223-230</pages><issn>1044-3983</issn><eissn>1531-5487</eissn><abstract>Background: Most ecologic studies of environmental equity show that groups with lower socioeconomic status (SES) are more likely to be exposed to higher air pollution levels than groups of higher SES. However, these studies rarely consider spatial autocorrelation in the data. We investigated the associations between traffic-related air pollution and SES on a small-area level in Strasbourg (France) and assessed the impact of spatial autocorrelation on the results. Methods: We used a deprivation index, constructed from census data, to estimate SES at the block level. Average ambient nitrogen dioxide (NO₂) levels during year 2000, modeled at the block level by a dispersion model, served as a marker of traffic exhaust. We estimated the association between exposure to NO₂ and the deprivation index by using an ordinary least squares model and a simultaneous autoregressive model that controls for the spatial autocorrelation of data. Results: The association between the deprivation index and NO₂ levels was positive and nonlinear with both regression models; the midlevel deprivation areas were the most exposed. Control of spatial autocorrelation strongly reduced the strength of the association but clearly improved the model's goodness-of-fit; the most pronounced reduction was observed for the midlevel deprivation areas (regression coefficients decreased by 67%). Conclusions: This study confirms the need to take spatial autocorrelation into account in ecologic studies and shows that failure to do so may lead to biased and unreliable estimates and thus to erroneous conclusions. This may be especially important in studying the role of air pollution on social inequalities in health.</abstract><cop>Philadelphia, PA</cop><pub>Lippincott Williams & Wilkins</pub><pmid>19142163</pmid><doi>10.1097/EDE.0b013e31819464e1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9872-3690</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-3983 |
ispartof | Epidemiology (Cambridge, Mass.), 2009-03, Vol.20 (2), p.223-230 |
issn | 1044-3983 1531-5487 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00672331v1 |
source | Jstor Complete Legacy; Journals@Ovid Ovid Autoload; MEDLINE |
subjects | Air Pollution Air Pollution - analysis Autocorrelation Biological and medical sciences Environmental Exposure Environmental justice Environmental pollution Epidemiology General aspects Germany Health Status Disparities Humans Life Sciences Medical sciences Metropolitan areas Miscellaneous Nitric Oxide Nitric Oxide - analysis Pollutant emissions Public health. Hygiene Public health. Hygiene-occupational medicine Santé publique et épidémiologie Small-Area Analysis Social Class Socioeconomic status Socioeconomics Spacial Epidemiology Spatial models Traffic estimation Vehicle Emissions |
title | Traffic-Related Air Pollution and Socioeconomic Status: A Spatial Autocorrelation Study to Assess Environmental Equity on a Small-Area Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic-Related%20Air%20Pollution%20and%20Socioeconomic%20Status:%20A%20Spatial%20Autocorrelation%20Study%20to%20Assess%20Environmental%20Equity%20on%20a%20Small-Area%20Scale&rft.jtitle=Epidemiology%20(Cambridge,%20Mass.)&rft.au=Havard,%20Sabrina&rft.date=2009-03&rft.volume=20&rft.issue=2&rft.spage=223&rft.epage=230&rft.pages=223-230&rft.issn=1044-3983&rft.eissn=1531-5487&rft_id=info:doi/10.1097/EDE.0b013e31819464e1&rft_dat=%3Cjstor_hal_p%3E20485693%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21299490&rft_id=info:pmid/19142163&rft_jstor_id=20485693&rfr_iscdi=true |