Detection of moving foreground objects in videos with strong camera motion

In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2011-08, Vol.14 (3), p.311-328
Hauptverfasser: Szolgay, D., Benois-Pineau, J., Megret, R., Gaestel, Y., Dartigues, J.-F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 3
container_start_page 311
container_title Pattern analysis and applications : PAA
container_volume 14
creator Szolgay, D.
Benois-Pineau, J.
Megret, R.
Gaestel, Y.
Dartigues, J.-F.
description In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.
doi_str_mv 10.1007/s10044-011-0221-2
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00669915v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00669915v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</originalsourceid><addsrcrecordid>eNp9kMtOAyEYRonRxHp5AHdsXLhAuQzMsGzqpZombjRxRxgGWpoWGpjW-PYyGdOlGyD853yBD4Abgu8JxvVDLmtVIUwIwpQSRE_AhFSMoZrzr9PjuSLn4CLnNcaMMdpMwNuj7a3pfQwwOriNBx-W0MVklynuQwdjuy7jDH2AB9_ZmOG371cw9ykW0OitTbpoQ8AVOHN6k-31334JPp-fPmZztHh_eZ1NF8gwyXvkWCVEK7nVUhAhGldjyqjlnEnJjGhYwxknuqs6zXFLnBG1Zq3ghaWiEpxdgrsxd6U3apf8VqcfFbVX8-lCDXcYCyEl4QdSWDKyJsWck3VHgWA1FKfG4lQpTg3FKVqc29HZ6Wz0xiUdjM9HkfJaUNoM76Ajl8soLG1S67hPoXz9n_BfZSB7ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of moving foreground objects in videos with strong camera motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Szolgay, D. ; Benois-Pineau, J. ; Megret, R. ; Gaestel, Y. ; Dartigues, J.-F.</creator><creatorcontrib>Szolgay, D. ; Benois-Pineau, J. ; Megret, R. ; Gaestel, Y. ; Dartigues, J.-F.</creatorcontrib><description>In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-011-0221-2</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Industrial and Commercial Application ; Multimedia ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Pattern analysis and applications : PAA, 2011-08, Vol.14 (3), p.311-328</ispartof><rights>Springer-Verlag London Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</citedby><cites>FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</cites><orcidid>0000-0003-0659-8894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-011-0221-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-011-0221-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25762285$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00669915$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Benois-Pineau, J.</creatorcontrib><creatorcontrib>Megret, R.</creatorcontrib><creatorcontrib>Gaestel, Y.</creatorcontrib><creatorcontrib>Dartigues, J.-F.</creatorcontrib><title>Detection of moving foreground objects in videos with strong camera motion</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Industrial and Commercial Application</subject><subject>Multimedia</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEYRonRxHp5AHdsXLhAuQzMsGzqpZombjRxRxgGWpoWGpjW-PYyGdOlGyD853yBD4Abgu8JxvVDLmtVIUwIwpQSRE_AhFSMoZrzr9PjuSLn4CLnNcaMMdpMwNuj7a3pfQwwOriNBx-W0MVklynuQwdjuy7jDH2AB9_ZmOG371cw9ykW0OitTbpoQ8AVOHN6k-31334JPp-fPmZztHh_eZ1NF8gwyXvkWCVEK7nVUhAhGldjyqjlnEnJjGhYwxknuqs6zXFLnBG1Zq3ghaWiEpxdgrsxd6U3apf8VqcfFbVX8-lCDXcYCyEl4QdSWDKyJsWck3VHgWA1FKfG4lQpTg3FKVqc29HZ6Wz0xiUdjM9HkfJaUNoM76Ajl8soLG1S67hPoXz9n_BfZSB7ig</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Szolgay, D.</creator><creator>Benois-Pineau, J.</creator><creator>Megret, R.</creator><creator>Gaestel, Y.</creator><creator>Dartigues, J.-F.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0659-8894</orcidid></search><sort><creationdate>20110801</creationdate><title>Detection of moving foreground objects in videos with strong camera motion</title><author>Szolgay, D. ; Benois-Pineau, J. ; Megret, R. ; Gaestel, Y. ; Dartigues, J.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Industrial and Commercial Application</topic><topic>Multimedia</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Benois-Pineau, J.</creatorcontrib><creatorcontrib>Megret, R.</creatorcontrib><creatorcontrib>Gaestel, Y.</creatorcontrib><creatorcontrib>Dartigues, J.-F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szolgay, D.</au><au>Benois-Pineau, J.</au><au>Megret, R.</au><au>Gaestel, Y.</au><au>Dartigues, J.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of moving foreground objects in videos with strong camera motion</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>14</volume><issue>3</issue><spage>311</spage><epage>328</epage><pages>311-328</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s10044-011-0221-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0659-8894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2011-08, Vol.14 (3), p.311-328
issn 1433-7541
1433-755X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00669915v1
source Springer Nature - Complete Springer Journals
subjects Applied sciences
Artificial intelligence
Computer Science
Computer science
control theory
systems
Exact sciences and technology
Industrial and Commercial Application
Multimedia
Pattern Recognition
Pattern recognition. Digital image processing. Computational geometry
title Detection of moving foreground objects in videos with strong camera motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T17%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20moving%20foreground%20objects%20in%20videos%20with%20strong%20camera%20motion&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Szolgay,%20D.&rft.date=2011-08-01&rft.volume=14&rft.issue=3&rft.spage=311&rft.epage=328&rft.pages=311-328&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-011-0221-2&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00669915v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true