Detection of moving foreground objects in videos with strong camera motion
In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. T...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2011-08, Vol.14 (3), p.311-328 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 3 |
container_start_page | 311 |
container_title | Pattern analysis and applications : PAA |
container_volume | 14 |
creator | Szolgay, D. Benois-Pineau, J. Megret, R. Gaestel, Y. Dartigues, J.-F. |
description | In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels. |
doi_str_mv | 10.1007/s10044-011-0221-2 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00669915v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00669915v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</originalsourceid><addsrcrecordid>eNp9kMtOAyEYRonRxHp5AHdsXLhAuQzMsGzqpZombjRxRxgGWpoWGpjW-PYyGdOlGyD853yBD4Abgu8JxvVDLmtVIUwIwpQSRE_AhFSMoZrzr9PjuSLn4CLnNcaMMdpMwNuj7a3pfQwwOriNBx-W0MVklynuQwdjuy7jDH2AB9_ZmOG371cw9ykW0OitTbpoQ8AVOHN6k-31334JPp-fPmZztHh_eZ1NF8gwyXvkWCVEK7nVUhAhGldjyqjlnEnJjGhYwxknuqs6zXFLnBG1Zq3ghaWiEpxdgrsxd6U3apf8VqcfFbVX8-lCDXcYCyEl4QdSWDKyJsWck3VHgWA1FKfG4lQpTg3FKVqc29HZ6Wz0xiUdjM9HkfJaUNoM76Ajl8soLG1S67hPoXz9n_BfZSB7ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of moving foreground objects in videos with strong camera motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Szolgay, D. ; Benois-Pineau, J. ; Megret, R. ; Gaestel, Y. ; Dartigues, J.-F.</creator><creatorcontrib>Szolgay, D. ; Benois-Pineau, J. ; Megret, R. ; Gaestel, Y. ; Dartigues, J.-F.</creatorcontrib><description>In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-011-0221-2</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Industrial and Commercial Application ; Multimedia ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Pattern analysis and applications : PAA, 2011-08, Vol.14 (3), p.311-328</ispartof><rights>Springer-Verlag London Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</citedby><cites>FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</cites><orcidid>0000-0003-0659-8894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-011-0221-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-011-0221-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25762285$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00669915$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Benois-Pineau, J.</creatorcontrib><creatorcontrib>Megret, R.</creatorcontrib><creatorcontrib>Gaestel, Y.</creatorcontrib><creatorcontrib>Dartigues, J.-F.</creatorcontrib><title>Detection of moving foreground objects in videos with strong camera motion</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Industrial and Commercial Application</subject><subject>Multimedia</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEYRonRxHp5AHdsXLhAuQzMsGzqpZombjRxRxgGWpoWGpjW-PYyGdOlGyD853yBD4Abgu8JxvVDLmtVIUwIwpQSRE_AhFSMoZrzr9PjuSLn4CLnNcaMMdpMwNuj7a3pfQwwOriNBx-W0MVklynuQwdjuy7jDH2AB9_ZmOG371cw9ykW0OitTbpoQ8AVOHN6k-31334JPp-fPmZztHh_eZ1NF8gwyXvkWCVEK7nVUhAhGldjyqjlnEnJjGhYwxknuqs6zXFLnBG1Zq3ghaWiEpxdgrsxd6U3apf8VqcfFbVX8-lCDXcYCyEl4QdSWDKyJsWck3VHgWA1FKfG4lQpTg3FKVqc29HZ6Wz0xiUdjM9HkfJaUNoM76Ajl8soLG1S67hPoXz9n_BfZSB7ig</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Szolgay, D.</creator><creator>Benois-Pineau, J.</creator><creator>Megret, R.</creator><creator>Gaestel, Y.</creator><creator>Dartigues, J.-F.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0659-8894</orcidid></search><sort><creationdate>20110801</creationdate><title>Detection of moving foreground objects in videos with strong camera motion</title><author>Szolgay, D. ; Benois-Pineau, J. ; Megret, R. ; Gaestel, Y. ; Dartigues, J.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f3466b95ea961668f70232e553993c68385351ad4da50b1fc67a3b65166264653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Industrial and Commercial Application</topic><topic>Multimedia</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Benois-Pineau, J.</creatorcontrib><creatorcontrib>Megret, R.</creatorcontrib><creatorcontrib>Gaestel, Y.</creatorcontrib><creatorcontrib>Dartigues, J.-F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szolgay, D.</au><au>Benois-Pineau, J.</au><au>Megret, R.</au><au>Gaestel, Y.</au><au>Dartigues, J.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of moving foreground objects in videos with strong camera motion</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>14</volume><issue>3</issue><spage>311</spage><epage>328</epage><pages>311-328</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>In this paper, we propose a novel method for moving foreground object extraction in sequences taken by a wearable camera, with strong motion. We use camera motion compensated frame differencing, enhanced with a novel kernel-based estimation of the probability density function of background pixels. The probability density functions are used for filtering false foreground pixels on the motion compensated difference frame. The estimation is based on a limited number of measurements; therefore, we introduce a special, spatio-temporal sample point selection and an adaptive thresholding method to deal with this challenge. Foreground objects are built with the DBSCAN algorithm from detected foreground pixels.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s10044-011-0221-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0659-8894</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7541 |
ispartof | Pattern analysis and applications : PAA, 2011-08, Vol.14 (3), p.311-328 |
issn | 1433-7541 1433-755X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00669915v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied sciences Artificial intelligence Computer Science Computer science control theory systems Exact sciences and technology Industrial and Commercial Application Multimedia Pattern Recognition Pattern recognition. Digital image processing. Computational geometry |
title | Detection of moving foreground objects in videos with strong camera motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T17%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20moving%20foreground%20objects%20in%20videos%20with%20strong%20camera%20motion&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Szolgay,%20D.&rft.date=2011-08-01&rft.volume=14&rft.issue=3&rft.spage=311&rft.epage=328&rft.pages=311-328&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-011-0221-2&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00669915v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |