Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media
Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Specia...
Gespeichert in:
Veröffentlicht in: | Wave motion 2012-11, Vol.49 (7), p.667-680 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 680 |
---|---|
container_issue | 7 |
container_start_page | 667 |
container_title | Wave motion |
container_volume | 49 |
creator | Lefeuve-Mesgouez, G. Mesgouez, A. Chiavassa, G. Lombard, B. |
description | Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches.
► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement. |
doi_str_mv | 10.1016/j.wavemoti.2012.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00667795v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016521251200056X</els_id><sourcerecordid>1642240035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEkvhLyBfkOCQ1F-x4xtV-SjSShwAiZs164ypV0m82N5F_fc4bOm1J9ujZ-Ydv2_TvGa0Y5Spy333B044xxI6ThnvqOwoVU-aDRv00Eohfj5tNhXsW854_7x5kfOeUsq0MJsmfsM5tLDAdFeCg4nAMpLlOGP695qx3MYxEx8TcXE-HEtYfpGSYMkBl0JW5UzCQvgHAi4ecx1yeYgp4gTrneTKluADjnXWGOBl88zDlPHV_XnR_Pj08fv1Tbv9-vnL9dW2ddLQ0jrd73SvNUc2joMHuRvdMDBNPUdUCJw5MGxnHHUI3isGYicF0n4QajBeiIvm3XnuLUz2kMIM6c5GCPbmamvXWrVIaW36E6_s2zN7SPH3EXOxc8gOpwkWrF-yTEnOJaWifxyVhituODcVVWfUpZhzQv-wBqN2Dc7u7f_g7BqcpXLdqja-udeAXDPw1WwX8kM3V8wooVjl3p85rD6eAiabXQ3FVZsTumLHGB6T-gvcxbOS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492629229</pqid></control><display><type>article</type><title>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</title><source>Elsevier ScienceDirect Journals</source><creator>Lefeuve-Mesgouez, G. ; Mesgouez, A. ; Chiavassa, G. ; Lombard, B.</creator><creatorcontrib>Lefeuve-Mesgouez, G. ; Mesgouez, A. ; Chiavassa, G. ; Lombard, B.</creatorcontrib><description>Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches.
► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2012.04.006</identifier><identifier>CODEN: WAMOD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Acoustics ; Biot model ; Computational fluid dynamics ; Conditioning ; Earth Sciences ; Engineering Sciences ; Environmental Sciences ; Exact sciences and technology ; Exact stiffness matrix method ; Finite-difference time domain ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; Geophysics ; Global Changes ; Hydraulic contact ; Linear acoustics ; Mathematical analysis ; Mathematical models ; Mechanics ; Numerical analysis ; Physics ; Poroelastic waves ; Sciences of the Universe ; Structural acoustics and vibration</subject><ispartof>Wave motion, 2012-11, Vol.49 (7), p.667-680</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</citedby><cites>FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</cites><orcidid>0000-0002-4001-6627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016521251200056X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26196361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00667795$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefeuve-Mesgouez, G.</creatorcontrib><creatorcontrib>Mesgouez, A.</creatorcontrib><creatorcontrib>Chiavassa, G.</creatorcontrib><creatorcontrib>Lombard, B.</creatorcontrib><title>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</title><title>Wave motion</title><description>Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches.
► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement.</description><subject>Acoustics</subject><subject>Biot model</subject><subject>Computational fluid dynamics</subject><subject>Conditioning</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Exact stiffness matrix method</subject><subject>Finite-difference time domain</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geophysics</subject><subject>Global Changes</subject><subject>Hydraulic contact</subject><subject>Linear acoustics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Poroelastic waves</subject><subject>Sciences of the Universe</subject><subject>Structural acoustics and vibration</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEEkvhLyBfkOCQ1F-x4xtV-SjSShwAiZs164ypV0m82N5F_fc4bOm1J9ujZ-Ydv2_TvGa0Y5Spy333B044xxI6ThnvqOwoVU-aDRv00Eohfj5tNhXsW854_7x5kfOeUsq0MJsmfsM5tLDAdFeCg4nAMpLlOGP695qx3MYxEx8TcXE-HEtYfpGSYMkBl0JW5UzCQvgHAi4ecx1yeYgp4gTrneTKluADjnXWGOBl88zDlPHV_XnR_Pj08fv1Tbv9-vnL9dW2ddLQ0jrd73SvNUc2joMHuRvdMDBNPUdUCJw5MGxnHHUI3isGYicF0n4QajBeiIvm3XnuLUz2kMIM6c5GCPbmamvXWrVIaW36E6_s2zN7SPH3EXOxc8gOpwkWrF-yTEnOJaWifxyVhituODcVVWfUpZhzQv-wBqN2Dc7u7f_g7BqcpXLdqja-udeAXDPw1WwX8kM3V8wooVjl3p85rD6eAiabXQ3FVZsTumLHGB6T-gvcxbOS</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Lefeuve-Mesgouez, G.</creator><creator>Mesgouez, A.</creator><creator>Chiavassa, G.</creator><creator>Lombard, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4001-6627</orcidid></search><sort><creationdate>20121101</creationdate><title>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</title><author>Lefeuve-Mesgouez, G. ; Mesgouez, A. ; Chiavassa, G. ; Lombard, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Biot model</topic><topic>Computational fluid dynamics</topic><topic>Conditioning</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Exact stiffness matrix method</topic><topic>Finite-difference time domain</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geophysics</topic><topic>Global Changes</topic><topic>Hydraulic contact</topic><topic>Linear acoustics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Poroelastic waves</topic><topic>Sciences of the Universe</topic><topic>Structural acoustics and vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefeuve-Mesgouez, G.</creatorcontrib><creatorcontrib>Mesgouez, A.</creatorcontrib><creatorcontrib>Chiavassa, G.</creatorcontrib><creatorcontrib>Lombard, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefeuve-Mesgouez, G.</au><au>Mesgouez, A.</au><au>Chiavassa, G.</au><au>Lombard, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</atitle><jtitle>Wave motion</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>49</volume><issue>7</issue><spage>667</spage><epage>680</epage><pages>667-680</pages><issn>0165-2125</issn><eissn>1878-433X</eissn><coden>WAMOD9</coden><abstract>Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches.
► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2012.04.006</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4001-6627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-2125 |
ispartof | Wave motion, 2012-11, Vol.49 (7), p.667-680 |
issn | 0165-2125 1878-433X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00667795v2 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustics Biot model Computational fluid dynamics Conditioning Earth Sciences Engineering Sciences Environmental Sciences Exact sciences and technology Exact stiffness matrix method Finite-difference time domain Fluid flow Fluids Fundamental areas of phenomenology (including applications) Geophysics Global Changes Hydraulic contact Linear acoustics Mathematical analysis Mathematical models Mechanics Numerical analysis Physics Poroelastic waves Sciences of the Universe Structural acoustics and vibration |
title | Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-analytical%20and%20numerical%20methods%20for%20computing%20transient%20waves%20in%202D%20acoustic/poroelastic%20stratified%20media&rft.jtitle=Wave%20motion&rft.au=Lefeuve-Mesgouez,%20G.&rft.date=2012-11-01&rft.volume=49&rft.issue=7&rft.spage=667&rft.epage=680&rft.pages=667-680&rft.issn=0165-2125&rft.eissn=1878-433X&rft.coden=WAMOD9&rft_id=info:doi/10.1016/j.wavemoti.2012.04.006&rft_dat=%3Cproquest_hal_p%3E1642240035%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492629229&rft_id=info:pmid/&rft_els_id=S016521251200056X&rfr_iscdi=true |