Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media

Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Specia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wave motion 2012-11, Vol.49 (7), p.667-680
Hauptverfasser: Lefeuve-Mesgouez, G., Mesgouez, A., Chiavassa, G., Lombard, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue 7
container_start_page 667
container_title Wave motion
container_volume 49
creator Lefeuve-Mesgouez, G.
Mesgouez, A.
Chiavassa, G.
Lombard, B.
description Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches. ► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement.
doi_str_mv 10.1016/j.wavemoti.2012.04.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00667795v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016521251200056X</els_id><sourcerecordid>1642240035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEkvhLyBfkOCQ1F-x4xtV-SjSShwAiZs164ypV0m82N5F_fc4bOm1J9ujZ-Ydv2_TvGa0Y5Spy333B044xxI6ThnvqOwoVU-aDRv00Eohfj5tNhXsW854_7x5kfOeUsq0MJsmfsM5tLDAdFeCg4nAMpLlOGP695qx3MYxEx8TcXE-HEtYfpGSYMkBl0JW5UzCQvgHAi4ecx1yeYgp4gTrneTKluADjnXWGOBl88zDlPHV_XnR_Pj08fv1Tbv9-vnL9dW2ddLQ0jrd73SvNUc2joMHuRvdMDBNPUdUCJw5MGxnHHUI3isGYicF0n4QajBeiIvm3XnuLUz2kMIM6c5GCPbmamvXWrVIaW36E6_s2zN7SPH3EXOxc8gOpwkWrF-yTEnOJaWifxyVhituODcVVWfUpZhzQv-wBqN2Dc7u7f_g7BqcpXLdqja-udeAXDPw1WwX8kM3V8wooVjl3p85rD6eAiabXQ3FVZsTumLHGB6T-gvcxbOS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492629229</pqid></control><display><type>article</type><title>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</title><source>Elsevier ScienceDirect Journals</source><creator>Lefeuve-Mesgouez, G. ; Mesgouez, A. ; Chiavassa, G. ; Lombard, B.</creator><creatorcontrib>Lefeuve-Mesgouez, G. ; Mesgouez, A. ; Chiavassa, G. ; Lombard, B.</creatorcontrib><description>Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches. ► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2012.04.006</identifier><identifier>CODEN: WAMOD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Acoustics ; Biot model ; Computational fluid dynamics ; Conditioning ; Earth Sciences ; Engineering Sciences ; Environmental Sciences ; Exact sciences and technology ; Exact stiffness matrix method ; Finite-difference time domain ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; Geophysics ; Global Changes ; Hydraulic contact ; Linear acoustics ; Mathematical analysis ; Mathematical models ; Mechanics ; Numerical analysis ; Physics ; Poroelastic waves ; Sciences of the Universe ; Structural acoustics and vibration</subject><ispartof>Wave motion, 2012-11, Vol.49 (7), p.667-680</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</citedby><cites>FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</cites><orcidid>0000-0002-4001-6627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016521251200056X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26196361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00667795$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefeuve-Mesgouez, G.</creatorcontrib><creatorcontrib>Mesgouez, A.</creatorcontrib><creatorcontrib>Chiavassa, G.</creatorcontrib><creatorcontrib>Lombard, B.</creatorcontrib><title>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</title><title>Wave motion</title><description>Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches. ► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement.</description><subject>Acoustics</subject><subject>Biot model</subject><subject>Computational fluid dynamics</subject><subject>Conditioning</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Exact stiffness matrix method</subject><subject>Finite-difference time domain</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geophysics</subject><subject>Global Changes</subject><subject>Hydraulic contact</subject><subject>Linear acoustics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Poroelastic waves</subject><subject>Sciences of the Universe</subject><subject>Structural acoustics and vibration</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEEkvhLyBfkOCQ1F-x4xtV-SjSShwAiZs164ypV0m82N5F_fc4bOm1J9ujZ-Ydv2_TvGa0Y5Spy333B044xxI6ThnvqOwoVU-aDRv00Eohfj5tNhXsW854_7x5kfOeUsq0MJsmfsM5tLDAdFeCg4nAMpLlOGP695qx3MYxEx8TcXE-HEtYfpGSYMkBl0JW5UzCQvgHAi4ecx1yeYgp4gTrneTKluADjnXWGOBl88zDlPHV_XnR_Pj08fv1Tbv9-vnL9dW2ddLQ0jrd73SvNUc2joMHuRvdMDBNPUdUCJw5MGxnHHUI3isGYicF0n4QajBeiIvm3XnuLUz2kMIM6c5GCPbmamvXWrVIaW36E6_s2zN7SPH3EXOxc8gOpwkWrF-yTEnOJaWifxyVhituODcVVWfUpZhzQv-wBqN2Dc7u7f_g7BqcpXLdqja-udeAXDPw1WwX8kM3V8wooVjl3p85rD6eAiabXQ3FVZsTumLHGB6T-gvcxbOS</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Lefeuve-Mesgouez, G.</creator><creator>Mesgouez, A.</creator><creator>Chiavassa, G.</creator><creator>Lombard, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4001-6627</orcidid></search><sort><creationdate>20121101</creationdate><title>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</title><author>Lefeuve-Mesgouez, G. ; Mesgouez, A. ; Chiavassa, G. ; Lombard, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-c75b75772e1dd8fa4bdc88170f2ee6ea21ca91b9c0ceaff61a3b43e0583689f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Biot model</topic><topic>Computational fluid dynamics</topic><topic>Conditioning</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Exact stiffness matrix method</topic><topic>Finite-difference time domain</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geophysics</topic><topic>Global Changes</topic><topic>Hydraulic contact</topic><topic>Linear acoustics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Poroelastic waves</topic><topic>Sciences of the Universe</topic><topic>Structural acoustics and vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefeuve-Mesgouez, G.</creatorcontrib><creatorcontrib>Mesgouez, A.</creatorcontrib><creatorcontrib>Chiavassa, G.</creatorcontrib><creatorcontrib>Lombard, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefeuve-Mesgouez, G.</au><au>Mesgouez, A.</au><au>Chiavassa, G.</au><au>Lombard, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media</atitle><jtitle>Wave motion</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>49</volume><issue>7</issue><spage>667</spage><epage>680</epage><pages>667-680</pages><issn>0165-2125</issn><eissn>1878-433X</eissn><coden>WAMOD9</coden><abstract>Wave propagation in a stratified fluid/porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by the Biot theory. Finally, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid/porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches. ► Wave propagation in a fluid/stratified porous medium is studied. ► Cross-check validation between semi-analytical and numerical approaches is proposed. ► Sealed/open/imperfect hydraulic contact is considered for realistic soil parameters. ► Numerical and semi-analytical transient results show an excellent level of agreement.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2012.04.006</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4001-6627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2012-11, Vol.49 (7), p.667-680
issn 0165-2125
1878-433X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00667795v2
source Elsevier ScienceDirect Journals
subjects Acoustics
Biot model
Computational fluid dynamics
Conditioning
Earth Sciences
Engineering Sciences
Environmental Sciences
Exact sciences and technology
Exact stiffness matrix method
Finite-difference time domain
Fluid flow
Fluids
Fundamental areas of phenomenology (including applications)
Geophysics
Global Changes
Hydraulic contact
Linear acoustics
Mathematical analysis
Mathematical models
Mechanics
Numerical analysis
Physics
Poroelastic waves
Sciences of the Universe
Structural acoustics and vibration
title Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-analytical%20and%20numerical%20methods%20for%20computing%20transient%20waves%20in%202D%20acoustic/poroelastic%20stratified%20media&rft.jtitle=Wave%20motion&rft.au=Lefeuve-Mesgouez,%20G.&rft.date=2012-11-01&rft.volume=49&rft.issue=7&rft.spage=667&rft.epage=680&rft.pages=667-680&rft.issn=0165-2125&rft.eissn=1878-433X&rft.coden=WAMOD9&rft_id=info:doi/10.1016/j.wavemoti.2012.04.006&rft_dat=%3Cproquest_hal_p%3E1642240035%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492629229&rft_id=info:pmid/&rft_els_id=S016521251200056X&rfr_iscdi=true