Time-varying electric field induced transmembrane potential of a core-shell model of biological cells

A numerical method is introduced to discuss the modulus and phase of the electric field induced transmembrane potential (EFITP) of a core-shell model of biological cells as a function of surface charge density, composition, morphology, polarization, and frequency of the oscillatory electric field. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2010-07, Vol.108 (1), p.014701-014701-10
Hauptverfasser: Mezeme, M. Essone, Brosseau, C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014701-10
container_issue 1
container_start_page 014701
container_title Journal of applied physics
container_volume 108
creator Mezeme, M. Essone
Brosseau, C.
description A numerical method is introduced to discuss the modulus and phase of the electric field induced transmembrane potential (EFITP) of a core-shell model of biological cells as a function of surface charge density, composition, morphology, polarization, and frequency of the oscillatory electric field. For computational ease, we consider a continuum model of two space dimensions modeling field simulation that describe the continuity and conservation of electric flux corresponding to the response of infinite cylinders in three space dimensions. Most of the potential drop occurs across the membrane at frequencies below the β relaxation frequency of the cell. We also discuss the relevance of these numerical calculations to many aspects of the ubiquitously observed cellular transformation. Having constructed a family of Cassinian curves modeling the geometry of the cell model, we proceed to test the validity of this approach based on numerical calculations of the EFITP. The EFITP phase, previously not considered in the literature, reveals essential information on the morphological changes in cell transformations. In particular, the shape and charge in the proximity of the membrane are important factors for the cell response to electromagnetic radiation.
doi_str_mv 10.1063/1.3456163
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00666865v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00666865v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-890c88b6638608c2947ee46d99ae73c4c4e1a03d5f155bb843f9cd87e05ffe843</originalsourceid><addsrcrecordid>eNp1kMFOwzAMQCMEEmNw4A9y5dDhLE2aXJCmCRjSJC7jHKWpswWlzdSUSfw9HUxw4mTZfrbsR8gtgxkDye_ZjJdCMsnPyISB0kUlBJyTCcCcFUpX-pJc5fwOwJjiekJwE1osDrb_DN2WYkQ39MFRHzA2NHTNh8OGDr3tcottPUak-zRgNwQbafLUUpd6LPIOY6RtavC7WocU0za4kXFjI1-TC29jxptTnJK3p8fNclWsX59flot14ThTw3gfOKVqKbmSoNxclxViKRutLVbcla5EZoE3wjMh6lqV3GvXqApBeI9jOiV3P3t3Npp9H9rxL5NsMKvF2hxrAFJKJcWB_bGuTzn36H8HGJijS8PMyeXIPvyw2YXBDiF1_8NHoeYk1JyE8i9kEHxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-varying electric field induced transmembrane potential of a core-shell model of biological cells</title><source>AIP Journals</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><source>Alma/SFX Local Collection</source><creator>Mezeme, M. Essone ; Brosseau, C.</creator><creatorcontrib>Mezeme, M. Essone ; Brosseau, C.</creatorcontrib><description>A numerical method is introduced to discuss the modulus and phase of the electric field induced transmembrane potential (EFITP) of a core-shell model of biological cells as a function of surface charge density, composition, morphology, polarization, and frequency of the oscillatory electric field. For computational ease, we consider a continuum model of two space dimensions modeling field simulation that describe the continuity and conservation of electric flux corresponding to the response of infinite cylinders in three space dimensions. Most of the potential drop occurs across the membrane at frequencies below the β relaxation frequency of the cell. We also discuss the relevance of these numerical calculations to many aspects of the ubiquitously observed cellular transformation. Having constructed a family of Cassinian curves modeling the geometry of the cell model, we proceed to test the validity of this approach based on numerical calculations of the EFITP. The EFITP phase, previously not considered in the literature, reveals essential information on the morphological changes in cell transformations. In particular, the shape and charge in the proximity of the membrane are important factors for the cell response to electromagnetic radiation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3456163</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2010-07, Vol.108 (1), p.014701-014701-10</ispartof><rights>2010 American Institute of Physics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-890c88b6638608c2947ee46d99ae73c4c4e1a03d5f155bb843f9cd87e05ffe843</citedby><cites>FETCH-LOGICAL-c318t-890c88b6638608c2947ee46d99ae73c4c4e1a03d5f155bb843f9cd87e05ffe843</cites><orcidid>0000-0002-2629-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3456163$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttps://hal.univ-brest.fr/hal-00666865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mezeme, M. Essone</creatorcontrib><creatorcontrib>Brosseau, C.</creatorcontrib><title>Time-varying electric field induced transmembrane potential of a core-shell model of biological cells</title><title>Journal of applied physics</title><description>A numerical method is introduced to discuss the modulus and phase of the electric field induced transmembrane potential (EFITP) of a core-shell model of biological cells as a function of surface charge density, composition, morphology, polarization, and frequency of the oscillatory electric field. For computational ease, we consider a continuum model of two space dimensions modeling field simulation that describe the continuity and conservation of electric flux corresponding to the response of infinite cylinders in three space dimensions. Most of the potential drop occurs across the membrane at frequencies below the β relaxation frequency of the cell. We also discuss the relevance of these numerical calculations to many aspects of the ubiquitously observed cellular transformation. Having constructed a family of Cassinian curves modeling the geometry of the cell model, we proceed to test the validity of this approach based on numerical calculations of the EFITP. The EFITP phase, previously not considered in the literature, reveals essential information on the morphological changes in cell transformations. In particular, the shape and charge in the proximity of the membrane are important factors for the cell response to electromagnetic radiation.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMQCMEEmNw4A9y5dDhLE2aXJCmCRjSJC7jHKWpswWlzdSUSfw9HUxw4mTZfrbsR8gtgxkDye_ZjJdCMsnPyISB0kUlBJyTCcCcFUpX-pJc5fwOwJjiekJwE1osDrb_DN2WYkQ39MFRHzA2NHTNh8OGDr3tcottPUak-zRgNwQbafLUUpd6LPIOY6RtavC7WocU0za4kXFjI1-TC29jxptTnJK3p8fNclWsX59flot14ThTw3gfOKVqKbmSoNxclxViKRutLVbcla5EZoE3wjMh6lqV3GvXqApBeI9jOiV3P3t3Npp9H9rxL5NsMKvF2hxrAFJKJcWB_bGuTzn36H8HGJijS8PMyeXIPvyw2YXBDiF1_8NHoeYk1JyE8i9kEHxA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Mezeme, M. Essone</creator><creator>Brosseau, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2629-0267</orcidid></search><sort><creationdate>20100701</creationdate><title>Time-varying electric field induced transmembrane potential of a core-shell model of biological cells</title><author>Mezeme, M. Essone ; Brosseau, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-890c88b6638608c2947ee46d99ae73c4c4e1a03d5f155bb843f9cd87e05ffe843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezeme, M. Essone</creatorcontrib><creatorcontrib>Brosseau, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezeme, M. Essone</au><au>Brosseau, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-varying electric field induced transmembrane potential of a core-shell model of biological cells</atitle><jtitle>Journal of applied physics</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>108</volume><issue>1</issue><spage>014701</spage><epage>014701-10</epage><pages>014701-014701-10</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A numerical method is introduced to discuss the modulus and phase of the electric field induced transmembrane potential (EFITP) of a core-shell model of biological cells as a function of surface charge density, composition, morphology, polarization, and frequency of the oscillatory electric field. For computational ease, we consider a continuum model of two space dimensions modeling field simulation that describe the continuity and conservation of electric flux corresponding to the response of infinite cylinders in three space dimensions. Most of the potential drop occurs across the membrane at frequencies below the β relaxation frequency of the cell. We also discuss the relevance of these numerical calculations to many aspects of the ubiquitously observed cellular transformation. Having constructed a family of Cassinian curves modeling the geometry of the cell model, we proceed to test the validity of this approach based on numerical calculations of the EFITP. The EFITP phase, previously not considered in the literature, reveals essential information on the morphological changes in cell transformations. In particular, the shape and charge in the proximity of the membrane are important factors for the cell response to electromagnetic radiation.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3456163</doi><orcidid>https://orcid.org/0000-0002-2629-0267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2010-07, Vol.108 (1), p.014701-014701-10
issn 0021-8979
1089-7550
language eng
recordid cdi_hal_primary_oai_HAL_hal_00666865v1
source AIP Journals; AIP_美国物理联合会期刊回溯(NSTL购买); Alma/SFX Local Collection
title Time-varying electric field induced transmembrane potential of a core-shell model of biological cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-varying%20electric%20field%20induced%20transmembrane%20potential%20of%20a%20core-shell%20model%20of%20biological%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mezeme,%20M.%20Essone&rft.date=2010-07-01&rft.volume=108&rft.issue=1&rft.spage=014701&rft.epage=014701-10&rft.pages=014701-014701-10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3456163&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00666865v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true