Looking for the first galaxies: lensing or blank fields?
Context. The identification and study of the first galaxies remains one of the most exciting topics in observational cosmology. The determination of the best possible observing strategies is a very important choice in order to build up a representative sample of spectroscopically confirmed sources a...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2010-01, Vol.509, p.A105 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A105 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 509 |
creator | Maizy, A. Richard, J. De Leo, M. A. Pelló, R. Kneib, J. P. |
description | Context. The identification and study of the first galaxies remains one of the most exciting topics in observational cosmology. The determination of the best possible observing strategies is a very important choice in order to build up a representative sample of spectroscopically confirmed sources at high-z (z$\ga$ 7), beyond the limits of present-day observations. Aims. This paper is intended to precisely adress the relative efficiency of lensing and blank fields in the identification and study of galaxies at 6 $\la$z$\la$ 12. Methods. The detection efficiency and field-to-field variance are estimated from direct simulations of both blank and lensing fields observations. Present known luminosity functions in the UV are used to determine the expected distribution and properties of distant samples at z$\ga$ 6 for a variety of survey configurations. Different models for well known lensing clusters are used to simulate in details the magnification and dilution effects on the backgound distant population of galaxies. Results. The presence of a strong-lensing cluster along the line of sight has a dramatic effect on the number of observed sources, with a positive magnification bias in typical ground-based “shallow” surveys (AB $\la$ 25.5). The positive magnification bias increases with the redshift of sources and decreases with both depth of the survey and the size of the surveyed area. The maximum efficiency is reached for lensing clusters at z ~ 0.1-0.3. Observing blank fields in shallow surveys is particularly inefficient as compared to lensing fields if the UV LF for LBGs is strongly evolving at z$\ga$ 7. Also in this case, the number of z≥ 8 sources expected at the typical depth of JWST (AB ~ 28-29) is much higher in lensing than in blank fields (e.g. a factor of ~10 for AB $\la$ 28). All these results have been obtained assuming that number counts derived in clusters are not dominated by sources below the limiting surface brightness of observations, which in turn depends on the reliability of the usual scalings applied to the size of high-z sources. Conclusions. Blank field surveys with a large field of view are needed to prove the bright end of the LF at z$\ga$ 6-7, whereas lensing clusters are particularly useful for exploring the mid to faint end of the LF. |
doi_str_mv | 10.1051/0004-6361/200911829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00660850v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>807265324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-35ee74573ebc93a0e17e1c6e616ea8aa4b79054264eee3517862771455e8019c3</originalsourceid><addsrcrecordid>eNqFkLtOxDAQRS0EEsvjC2jSIEQRmPE7NAgQ7xVQ8Cgtb5hA2LBZ7IDg73G0KC2VNb5nRleHsS2EPQSF-wAgcy007nOAAtHyYomNUAqeg5F6mY0GYpWtxfiWRo5WjJgdt-20nr1kVRuy7pWyqg6xy158479rigdZQ7PY5ymeNH42TQA1z_Fwg61Uvom0-feus4ez0_uTi3x8e355cjTOS8V1lwtFZKQygiZlITwQGsJSk0ZN3novJ6YAJbmWRCQUGqu5MSiVIgtYlGKd7S7uvvrGzUP97sOPa33tLo7Grv8D0Bqsgi9M7M6CnYf245Ni597rWFKTelP7GZ0Fw7USXP5LJmmolZQ2kWJBlqGNMVA1lEBwvXzXq3W9WjfIT1vbf_d9LH1TBT8r6ziscq44FEXfI19wdezoe8h9mDpthFGp8pM7vru6Aa0e3bX4BcY4jxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746165448</pqid></control><display><type>article</type><title>Looking for the first galaxies: lensing or blank fields?</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Maizy, A. ; Richard, J. ; De Leo, M. A. ; Pelló, R. ; Kneib, J. P.</creator><creatorcontrib>Maizy, A. ; Richard, J. ; De Leo, M. A. ; Pelló, R. ; Kneib, J. P.</creatorcontrib><description>Context. The identification and study of the first galaxies remains one of the most exciting topics in observational cosmology. The determination of the best possible observing strategies is a very important choice in order to build up a representative sample of spectroscopically confirmed sources at high-z (z$\ga$ 7), beyond the limits of present-day observations. Aims. This paper is intended to precisely adress the relative efficiency of lensing and blank fields in the identification and study of galaxies at 6 $\la$z$\la$ 12. Methods. The detection efficiency and field-to-field variance are estimated from direct simulations of both blank and lensing fields observations. Present known luminosity functions in the UV are used to determine the expected distribution and properties of distant samples at z$\ga$ 6 for a variety of survey configurations. Different models for well known lensing clusters are used to simulate in details the magnification and dilution effects on the backgound distant population of galaxies. Results. The presence of a strong-lensing cluster along the line of sight has a dramatic effect on the number of observed sources, with a positive magnification bias in typical ground-based “shallow” surveys (AB $\la$ 25.5). The positive magnification bias increases with the redshift of sources and decreases with both depth of the survey and the size of the surveyed area. The maximum efficiency is reached for lensing clusters at z ~ 0.1-0.3. Observing blank fields in shallow surveys is particularly inefficient as compared to lensing fields if the UV LF for LBGs is strongly evolving at z$\ga$ 7. Also in this case, the number of z≥ 8 sources expected at the typical depth of JWST (AB ~ 28-29) is much higher in lensing than in blank fields (e.g. a factor of ~10 for AB $\la$ 28). All these results have been obtained assuming that number counts derived in clusters are not dominated by sources below the limiting surface brightness of observations, which in turn depends on the reliability of the usual scalings applied to the size of high-z sources. Conclusions. Blank field surveys with a large field of view are needed to prove the bright end of the LF at z$\ga$ 6-7, whereas lensing clusters are particularly useful for exploring the mid to faint end of the LF.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/200911829</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; Astrophysics ; Cosmology and Extra-Galactic Astrophysics ; Earth, ocean, space ; Exact sciences and technology ; galaxies: clusters: general ; galaxies: high-redshift ; galaxies: luminosity function ; gravitational lensing: strong ; mass function ; Physics ; Sciences of the Universe</subject><ispartof>Astronomy and astrophysics (Berlin), 2010-01, Vol.509, p.A105</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-35ee74573ebc93a0e17e1c6e616ea8aa4b79054264eee3517862771455e8019c3</citedby><orcidid>0000-0001-5492-1049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,3729,27931,27932</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22520994$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00660850$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maizy, A.</creatorcontrib><creatorcontrib>Richard, J.</creatorcontrib><creatorcontrib>De Leo, M. A.</creatorcontrib><creatorcontrib>Pelló, R.</creatorcontrib><creatorcontrib>Kneib, J. P.</creatorcontrib><title>Looking for the first galaxies: lensing or blank fields?</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The identification and study of the first galaxies remains one of the most exciting topics in observational cosmology. The determination of the best possible observing strategies is a very important choice in order to build up a representative sample of spectroscopically confirmed sources at high-z (z$\ga$ 7), beyond the limits of present-day observations. Aims. This paper is intended to precisely adress the relative efficiency of lensing and blank fields in the identification and study of galaxies at 6 $\la$z$\la$ 12. Methods. The detection efficiency and field-to-field variance are estimated from direct simulations of both blank and lensing fields observations. Present known luminosity functions in the UV are used to determine the expected distribution and properties of distant samples at z$\ga$ 6 for a variety of survey configurations. Different models for well known lensing clusters are used to simulate in details the magnification and dilution effects on the backgound distant population of galaxies. Results. The presence of a strong-lensing cluster along the line of sight has a dramatic effect on the number of observed sources, with a positive magnification bias in typical ground-based “shallow” surveys (AB $\la$ 25.5). The positive magnification bias increases with the redshift of sources and decreases with both depth of the survey and the size of the surveyed area. The maximum efficiency is reached for lensing clusters at z ~ 0.1-0.3. Observing blank fields in shallow surveys is particularly inefficient as compared to lensing fields if the UV LF for LBGs is strongly evolving at z$\ga$ 7. Also in this case, the number of z≥ 8 sources expected at the typical depth of JWST (AB ~ 28-29) is much higher in lensing than in blank fields (e.g. a factor of ~10 for AB $\la$ 28). All these results have been obtained assuming that number counts derived in clusters are not dominated by sources below the limiting surface brightness of observations, which in turn depends on the reliability of the usual scalings applied to the size of high-z sources. Conclusions. Blank field surveys with a large field of view are needed to prove the bright end of the LF at z$\ga$ 6-7, whereas lensing clusters are particularly useful for exploring the mid to faint end of the LF.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Cosmology and Extra-Galactic Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>galaxies: clusters: general</subject><subject>galaxies: high-redshift</subject><subject>galaxies: luminosity function</subject><subject>gravitational lensing: strong</subject><subject>mass function</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOxDAQRS0EEsvjC2jSIEQRmPE7NAgQ7xVQ8Cgtb5hA2LBZ7IDg73G0KC2VNb5nRleHsS2EPQSF-wAgcy007nOAAtHyYomNUAqeg5F6mY0GYpWtxfiWRo5WjJgdt-20nr1kVRuy7pWyqg6xy158479rigdZQ7PY5ymeNH42TQA1z_Fwg61Uvom0-feus4ez0_uTi3x8e355cjTOS8V1lwtFZKQygiZlITwQGsJSk0ZN3novJ6YAJbmWRCQUGqu5MSiVIgtYlGKd7S7uvvrGzUP97sOPa33tLo7Grv8D0Bqsgi9M7M6CnYf245Ni597rWFKTelP7GZ0Fw7USXP5LJmmolZQ2kWJBlqGNMVA1lEBwvXzXq3W9WjfIT1vbf_d9LH1TBT8r6ziscq44FEXfI19wdezoe8h9mDpthFGp8pM7vru6Aa0e3bX4BcY4jxA</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Maizy, A.</creator><creator>Richard, J.</creator><creator>De Leo, M. A.</creator><creator>Pelló, R.</creator><creator>Kneib, J. P.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5492-1049</orcidid></search><sort><creationdate>20100101</creationdate><title>Looking for the first galaxies: lensing or blank fields?</title><author>Maizy, A. ; Richard, J. ; De Leo, M. A. ; Pelló, R. ; Kneib, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-35ee74573ebc93a0e17e1c6e616ea8aa4b79054264eee3517862771455e8019c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Cosmology and Extra-Galactic Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>galaxies: clusters: general</topic><topic>galaxies: high-redshift</topic><topic>galaxies: luminosity function</topic><topic>gravitational lensing: strong</topic><topic>mass function</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maizy, A.</creatorcontrib><creatorcontrib>Richard, J.</creatorcontrib><creatorcontrib>De Leo, M. A.</creatorcontrib><creatorcontrib>Pelló, R.</creatorcontrib><creatorcontrib>Kneib, J. P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maizy, A.</au><au>Richard, J.</au><au>De Leo, M. A.</au><au>Pelló, R.</au><au>Kneib, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking for the first galaxies: lensing or blank fields?</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>509</volume><spage>A105</spage><pages>A105-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><coden>AAEJAF</coden><abstract>Context. The identification and study of the first galaxies remains one of the most exciting topics in observational cosmology. The determination of the best possible observing strategies is a very important choice in order to build up a representative sample of spectroscopically confirmed sources at high-z (z$\ga$ 7), beyond the limits of present-day observations. Aims. This paper is intended to precisely adress the relative efficiency of lensing and blank fields in the identification and study of galaxies at 6 $\la$z$\la$ 12. Methods. The detection efficiency and field-to-field variance are estimated from direct simulations of both blank and lensing fields observations. Present known luminosity functions in the UV are used to determine the expected distribution and properties of distant samples at z$\ga$ 6 for a variety of survey configurations. Different models for well known lensing clusters are used to simulate in details the magnification and dilution effects on the backgound distant population of galaxies. Results. The presence of a strong-lensing cluster along the line of sight has a dramatic effect on the number of observed sources, with a positive magnification bias in typical ground-based “shallow” surveys (AB $\la$ 25.5). The positive magnification bias increases with the redshift of sources and decreases with both depth of the survey and the size of the surveyed area. The maximum efficiency is reached for lensing clusters at z ~ 0.1-0.3. Observing blank fields in shallow surveys is particularly inefficient as compared to lensing fields if the UV LF for LBGs is strongly evolving at z$\ga$ 7. Also in this case, the number of z≥ 8 sources expected at the typical depth of JWST (AB ~ 28-29) is much higher in lensing than in blank fields (e.g. a factor of ~10 for AB $\la$ 28). All these results have been obtained assuming that number counts derived in clusters are not dominated by sources below the limiting surface brightness of observations, which in turn depends on the reliability of the usual scalings applied to the size of high-z sources. Conclusions. Blank field surveys with a large field of view are needed to prove the bright end of the LF at z$\ga$ 6-7, whereas lensing clusters are particularly useful for exploring the mid to faint end of the LF.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/200911829</doi><orcidid>https://orcid.org/0000-0001-5492-1049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2010-01, Vol.509, p.A105 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00660850v1 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals |
subjects | Astronomy Astrophysics Cosmology and Extra-Galactic Astrophysics Earth, ocean, space Exact sciences and technology galaxies: clusters: general galaxies: high-redshift galaxies: luminosity function gravitational lensing: strong mass function Physics Sciences of the Universe |
title | Looking for the first galaxies: lensing or blank fields? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T22%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20for%20the%20first%20galaxies:%20lensing%20or%20blank%20fields?&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Maizy,%20A.&rft.date=2010-01-01&rft.volume=509&rft.spage=A105&rft.pages=A105-&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361/200911829&rft_dat=%3Cproquest_hal_p%3E807265324%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746165448&rft_id=info:pmid/&rfr_iscdi=true |