Copula analysis of mixture models

Contemporary computers collect databases that can be too large for classical methods to handle. The present work takes data whose observations are distribution functions (rather than the single numerical point value of classical data) and presents a computational statistical approach of a new method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2012-09, Vol.27 (3), p.427-457
Hauptverfasser: Vrac, M., Billard, L., Diday, E., Chédin, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 3
container_start_page 427
container_title Computational statistics
container_volume 27
creator Vrac, M.
Billard, L.
Diday, E.
Chédin, A.
description Contemporary computers collect databases that can be too large for classical methods to handle. The present work takes data whose observations are distribution functions (rather than the single numerical point value of classical data) and presents a computational statistical approach of a new methodology to group the distributions into classes. The clustering method links the searched partition to the decomposition of mixture densities, through the notions of a function of distributions and of multi-dimensional copulas. The new clustering technique is illustrated by ascertaining distinct temperature and humidity regions for a global climate dataset and shows that the results compare favorably with those obtained from the standard EM algorithm method.
doi_str_mv 10.1007/s00180-011-0266-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00660045v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038257121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2663047d927a13add1dd3d4517ff63fe372ff0a91c4abb83c378cec756cb0a5d3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuKG11Ez0napF0OgzcYcKPrkMlFO7STMZmK8_a2VkQEVwcO338uHyGnCFcIIK8TAJZAAZECE4LCHpmgQE4rUZT7ZAJVzmkOgh2So5RWAIxJhhNyNg-brtGZXutml-qUBZ-19ce2iy5rg3VNOiYHXjfJnXzXKXm-vXma39PF493DfLagJmdiS_ulHHJpKyY1cm0tWsttXqD0XnDvuGTeg67Q5Hq5LLnhsjTOyEKYJejC8im5HOe-6kZtYt3quFNB1-p-tlBDD0AIgLx4x569GNlNDG-dS1vV1sm4ptFrF7qkEHjJColsQM__oKvQxf7bLwqYxArLnsKRMjGkFJ3_uQBBDYLVKFj1gtUgWEGfYWMm9ez6xcXfk_8LfQLTOnpc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030271918</pqid></control><display><type>article</type><title>Copula analysis of mixture models</title><source>Springer Nature - Complete Springer Journals</source><creator>Vrac, M. ; Billard, L. ; Diday, E. ; Chédin, A.</creator><creatorcontrib>Vrac, M. ; Billard, L. ; Diday, E. ; Chédin, A.</creatorcontrib><description>Contemporary computers collect databases that can be too large for classical methods to handle. The present work takes data whose observations are distribution functions (rather than the single numerical point value of classical data) and presents a computational statistical approach of a new methodology to group the distributions into classes. The clustering method links the searched partition to the decomposition of mixture densities, through the notions of a function of distributions and of multi-dimensional copulas. The new clustering technique is illustrated by ascertaining distinct temperature and humidity regions for a global climate dataset and shows that the results compare favorably with those obtained from the standard EM algorithm method.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-011-0266-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Analysis ; Climate ; Clustering ; Computation ; Computer simulation ; Computers ; Data analysis ; Datasets ; Decomposition ; Density ; Dynamical systems ; Economic Theory/Quantitative Economics/Mathematical Methods ; Humidity ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Original Paper ; Partitions ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Statistics ; Statistics Theory ; Studies</subject><ispartof>Computational statistics, 2012-09, Vol.27 (3), p.427-457</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-2663047d927a13add1dd3d4517ff63fe372ff0a91c4abb83c378cec756cb0a5d3</citedby><cites>FETCH-LOGICAL-c426t-2663047d927a13add1dd3d4517ff63fe372ff0a91c4abb83c378cec756cb0a5d3</cites><orcidid>0000-0002-6176-0439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-011-0266-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-011-0266-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00660045$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vrac, M.</creatorcontrib><creatorcontrib>Billard, L.</creatorcontrib><creatorcontrib>Diday, E.</creatorcontrib><creatorcontrib>Chédin, A.</creatorcontrib><title>Copula analysis of mixture models</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>Contemporary computers collect databases that can be too large for classical methods to handle. The present work takes data whose observations are distribution functions (rather than the single numerical point value of classical data) and presents a computational statistical approach of a new methodology to group the distributions into classes. The clustering method links the searched partition to the decomposition of mixture densities, through the notions of a function of distributions and of multi-dimensional copulas. The new clustering technique is illustrated by ascertaining distinct temperature and humidity regions for a global climate dataset and shows that the results compare favorably with those obtained from the standard EM algorithm method.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Climate</subject><subject>Clustering</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Humidity</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Partitions</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>Studies</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuKG11Ez0napF0OgzcYcKPrkMlFO7STMZmK8_a2VkQEVwcO338uHyGnCFcIIK8TAJZAAZECE4LCHpmgQE4rUZT7ZAJVzmkOgh2So5RWAIxJhhNyNg-brtGZXutml-qUBZ-19ce2iy5rg3VNOiYHXjfJnXzXKXm-vXma39PF493DfLagJmdiS_ulHHJpKyY1cm0tWsttXqD0XnDvuGTeg67Q5Hq5LLnhsjTOyEKYJejC8im5HOe-6kZtYt3quFNB1-p-tlBDD0AIgLx4x569GNlNDG-dS1vV1sm4ptFrF7qkEHjJColsQM__oKvQxf7bLwqYxArLnsKRMjGkFJ3_uQBBDYLVKFj1gtUgWEGfYWMm9ez6xcXfk_8LfQLTOnpc</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Vrac, M.</creator><creator>Billard, L.</creator><creator>Diday, E.</creator><creator>Chédin, A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6176-0439</orcidid></search><sort><creationdate>20120901</creationdate><title>Copula analysis of mixture models</title><author>Vrac, M. ; Billard, L. ; Diday, E. ; Chédin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2663047d927a13add1dd3d4517ff63fe372ff0a91c4abb83c378cec756cb0a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Climate</topic><topic>Clustering</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Humidity</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Partitions</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrac, M.</creatorcontrib><creatorcontrib>Billard, L.</creatorcontrib><creatorcontrib>Diday, E.</creatorcontrib><creatorcontrib>Chédin, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrac, M.</au><au>Billard, L.</au><au>Diday, E.</au><au>Chédin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copula analysis of mixture models</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>27</volume><issue>3</issue><spage>427</spage><epage>457</epage><pages>427-457</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>Contemporary computers collect databases that can be too large for classical methods to handle. The present work takes data whose observations are distribution functions (rather than the single numerical point value of classical data) and presents a computational statistical approach of a new methodology to group the distributions into classes. The clustering method links the searched partition to the decomposition of mixture densities, through the notions of a function of distributions and of multi-dimensional copulas. The new clustering technique is illustrated by ascertaining distinct temperature and humidity regions for a global climate dataset and shows that the results compare favorably with those obtained from the standard EM algorithm method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00180-011-0266-0</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-6176-0439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2012-09, Vol.27 (3), p.427-457
issn 0943-4062
1613-9658
language eng
recordid cdi_hal_primary_oai_HAL_hal_00660045v1
source Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Climate
Clustering
Computation
Computer simulation
Computers
Data analysis
Datasets
Decomposition
Density
Dynamical systems
Economic Theory/Quantitative Economics/Mathematical Methods
Humidity
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Original Paper
Partitions
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
Statistics Theory
Studies
title Copula analysis of mixture models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copula%20analysis%20of%20mixture%20models&rft.jtitle=Computational%20statistics&rft.au=Vrac,%20M.&rft.date=2012-09-01&rft.volume=27&rft.issue=3&rft.spage=427&rft.epage=457&rft.pages=427-457&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-011-0266-0&rft_dat=%3Cproquest_hal_p%3E1038257121%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030271918&rft_id=info:pmid/&rfr_iscdi=true