Deformation of roots of polynomials via fractional derivatives
We first recall the main features of Fractional calculus. In the expression of fractional derivatives of a real polynomial f(x), we view the order of differentiation q as a new indeterminate; then we define a new bivariate polynomial Pf(x,q). For 0⩽q⩽1, Pf(x,q) defines a homotopy between the polynom...
Gespeichert in:
Veröffentlicht in: | Journal of symbolic computation 2013-05, Vol.52, p.35-50 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | |
container_start_page | 35 |
container_title | Journal of symbolic computation |
container_volume | 52 |
creator | Galligo, André |
description | We first recall the main features of Fractional calculus. In the expression of fractional derivatives of a real polynomial f(x), we view the order of differentiation q as a new indeterminate; then we define a new bivariate polynomial Pf(x,q). For 0⩽q⩽1, Pf(x,q) defines a homotopy between the polynomials f(x) and xf′(x). Iterating this construction, we associate to f(x) a plane spline curve, called the stem of f. Stems of classic random polynomials exhibits intriguing patterns; moreover in the complex plane Pf(x,q) creates an unexpected correspondence between the complex roots and the critical points of f(x). We propose 3 conjectures to describe and explain these phenomena. Illustrations are provided relying on the Computer algebra system Maple. |
doi_str_mv | 10.1016/j.jsc.2012.05.011 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00653770v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0747717112001289</els_id><sourcerecordid>S0747717112001289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-2ed1841624b2e0e27c1938082b1c11a36425b8ef281566c5acbb6379b0f509de3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AG-9emidSZumRRCW9WOFBS8K3kKaTjClu1mSUth_b8uKR08ZwnsD8xi7RcgQsLzvsi6ajAPyDEQGiGdsgVCLtBLi65wtQBYylSjxkl3F2AFAXeRiwR6fyPqw04Pz-8TbJHg_xHk4-P649zun-5iMTic2aDNDuk9aCm6cjJHiNbuwE0E3v--Sfb48f6w36fb99W292qYml8WQcmqxKrDkRcMJiEuDdV5BxRs0iDovCy6aiiyvUJSlEdo0TZnLugEroG4pX7K7095v3atDcDsdjsprpzarrZr_AEqRSwkjTiyeWBN8jIHsn4Cg5liqU1MsNcdSINQUa3IeTg5NR4yOgorG0d5Q6wKZQbXe_WP_AK_2cSk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deformation of roots of polynomials via fractional derivatives</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Galligo, André</creator><creatorcontrib>Galligo, André</creatorcontrib><description>We first recall the main features of Fractional calculus. In the expression of fractional derivatives of a real polynomial f(x), we view the order of differentiation q as a new indeterminate; then we define a new bivariate polynomial Pf(x,q). For 0⩽q⩽1, Pf(x,q) defines a homotopy between the polynomials f(x) and xf′(x). Iterating this construction, we associate to f(x) a plane spline curve, called the stem of f. Stems of classic random polynomials exhibits intriguing patterns; moreover in the complex plane Pf(x,q) creates an unexpected correspondence between the complex roots and the critical points of f(x). We propose 3 conjectures to describe and explain these phenomena. Illustrations are provided relying on the Computer algebra system Maple.</description><identifier>ISSN: 0747-7171</identifier><identifier>EISSN: 1095-855X</identifier><identifier>DOI: 10.1016/j.jsc.2012.05.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Complex critical points ; Deformation ; Differential Geometry ; FD-curve ; Fractional derivatives ; Mathematics ; Patterns ; Random polynomials ; Roots of real univariate polynomials ; Stems</subject><ispartof>Journal of symbolic computation, 2013-05, Vol.52, p.35-50</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-2ed1841624b2e0e27c1938082b1c11a36425b8ef281566c5acbb6379b0f509de3</citedby><cites>FETCH-LOGICAL-c374t-2ed1841624b2e0e27c1938082b1c11a36425b8ef281566c5acbb6379b0f509de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsc.2012.05.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00653770$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Galligo, André</creatorcontrib><title>Deformation of roots of polynomials via fractional derivatives</title><title>Journal of symbolic computation</title><description>We first recall the main features of Fractional calculus. In the expression of fractional derivatives of a real polynomial f(x), we view the order of differentiation q as a new indeterminate; then we define a new bivariate polynomial Pf(x,q). For 0⩽q⩽1, Pf(x,q) defines a homotopy between the polynomials f(x) and xf′(x). Iterating this construction, we associate to f(x) a plane spline curve, called the stem of f. Stems of classic random polynomials exhibits intriguing patterns; moreover in the complex plane Pf(x,q) creates an unexpected correspondence between the complex roots and the critical points of f(x). We propose 3 conjectures to describe and explain these phenomena. Illustrations are provided relying on the Computer algebra system Maple.</description><subject>Complex critical points</subject><subject>Deformation</subject><subject>Differential Geometry</subject><subject>FD-curve</subject><subject>Fractional derivatives</subject><subject>Mathematics</subject><subject>Patterns</subject><subject>Random polynomials</subject><subject>Roots of real univariate polynomials</subject><subject>Stems</subject><issn>0747-7171</issn><issn>1095-855X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AG-9emidSZumRRCW9WOFBS8K3kKaTjClu1mSUth_b8uKR08ZwnsD8xi7RcgQsLzvsi6ajAPyDEQGiGdsgVCLtBLi65wtQBYylSjxkl3F2AFAXeRiwR6fyPqw04Pz-8TbJHg_xHk4-P649zun-5iMTic2aDNDuk9aCm6cjJHiNbuwE0E3v--Sfb48f6w36fb99W292qYml8WQcmqxKrDkRcMJiEuDdV5BxRs0iDovCy6aiiyvUJSlEdo0TZnLugEroG4pX7K7095v3atDcDsdjsprpzarrZr_AEqRSwkjTiyeWBN8jIHsn4Cg5liqU1MsNcdSINQUa3IeTg5NR4yOgorG0d5Q6wKZQbXe_WP_AK_2cSk</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Galligo, André</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20130501</creationdate><title>Deformation of roots of polynomials via fractional derivatives</title><author>Galligo, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-2ed1841624b2e0e27c1938082b1c11a36425b8ef281566c5acbb6379b0f509de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Complex critical points</topic><topic>Deformation</topic><topic>Differential Geometry</topic><topic>FD-curve</topic><topic>Fractional derivatives</topic><topic>Mathematics</topic><topic>Patterns</topic><topic>Random polynomials</topic><topic>Roots of real univariate polynomials</topic><topic>Stems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galligo, André</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of symbolic computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galligo, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation of roots of polynomials via fractional derivatives</atitle><jtitle>Journal of symbolic computation</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>52</volume><spage>35</spage><epage>50</epage><pages>35-50</pages><issn>0747-7171</issn><eissn>1095-855X</eissn><abstract>We first recall the main features of Fractional calculus. In the expression of fractional derivatives of a real polynomial f(x), we view the order of differentiation q as a new indeterminate; then we define a new bivariate polynomial Pf(x,q). For 0⩽q⩽1, Pf(x,q) defines a homotopy between the polynomials f(x) and xf′(x). Iterating this construction, we associate to f(x) a plane spline curve, called the stem of f. Stems of classic random polynomials exhibits intriguing patterns; moreover in the complex plane Pf(x,q) creates an unexpected correspondence between the complex roots and the critical points of f(x). We propose 3 conjectures to describe and explain these phenomena. Illustrations are provided relying on the Computer algebra system Maple.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsc.2012.05.011</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0747-7171 |
ispartof | Journal of symbolic computation, 2013-05, Vol.52, p.35-50 |
issn | 0747-7171 1095-855X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00653770v1 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Complex critical points Deformation Differential Geometry FD-curve Fractional derivatives Mathematics Patterns Random polynomials Roots of real univariate polynomials Stems |
title | Deformation of roots of polynomials via fractional derivatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20of%20roots%20of%20polynomials%20via%20fractional%20derivatives&rft.jtitle=Journal%20of%20symbolic%20computation&rft.au=Galligo,%20Andr%C3%A9&rft.date=2013-05-01&rft.volume=52&rft.spage=35&rft.epage=50&rft.pages=35-50&rft.issn=0747-7171&rft.eissn=1095-855X&rft_id=info:doi/10.1016/j.jsc.2012.05.011&rft_dat=%3Celsevier_hal_p%3ES0747717112001289%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0747717112001289&rfr_iscdi=true |