Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis

Permian–Triassic boundary microbialites (PTBMs) are thin (0.05–15 m) carbonates formed after the end‐Permian mass extinction. They comprise Renalcis‐group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geobiology 2012-01, Vol.10 (1), p.25-47
Hauptverfasser: KERSHAW, S., CRASQUIN, S., LI, Y., COLLIN, P.-Y., FOREL, M.-B., MU, X., BAUD, A., WANG, Y., XIE, S., MAURER, F., GUO, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 25
container_title Geobiology
container_volume 10
creator KERSHAW, S.
CRASQUIN, S.
LI, Y.
COLLIN, P.-Y.
FOREL, M.-B.
MU, X.
BAUD, A.
WANG, Y.
XIE, S.
MAURER, F.
GUO, L.
description Permian–Triassic boundary microbialites (PTBMs) are thin (0.05–15 m) carbonates formed after the end‐Permian mass extinction. They comprise Renalcis‐group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. PTBMs are abundant in low‐latitude shallow‐marine carbonate shelves in central Tethyan continents but are rare in higher latitudes, likely inhibited by clastic supply on Pangaea margins. PTBMs occupied broadly similar environments to Late Permian reefs in Tethys, but extended into deeper waters. Late Permian reefs are also rich in microbes (and cements), so post‐extinction seawater carbonate saturation was likely similar to the Late Permian. However, PTBMs lack widespread abundant inorganic carbonate cement fans, so a previous interpretation that anoxic bicarbonate‐rich water upwelled to rapidly increase carbonate saturation of shallow seawater, post‐extinction, is problematic. Preliminary pyrite framboid evidence shows anoxia in PTBM facies, but interbedded shelly faunas indicate oxygenated water, perhaps there was short‐term pulsing of normally saturated anoxic water from the oxygen‐minimum zone to surface waters. In Tethys, PTBMs show geographic variations: (i) in south China, PTBMs are mostly thrombolites in open shelf settings, largely recrystallised, with remnant structure of Renalcis‐group calcimicrobes; (ii) in south Turkey, in shallow waters, stromatolites and thrombolites, lacking calcimicrobes, are interbedded, likely depth‐controlled; and (iii) in the Middle East, especially Iran, stromatolites and thrombolites (calcimicrobes uncommon) occur in different sites on open shelves, where controls are unclear. Thus, PTBMs were under more complex control than previously portrayed, with local facies control playing a significant role in their structure and composition.
doi_str_mv 10.1111/j.1472-4669.2011.00302.x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00653031v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>917857799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5372-9a89c592a084ed1dcd1724f89f038be018503083aa38f3f90dae3d389bbd40313</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoqXwF5BviEOCP5K1jbi0Fd1W2gUkFiFxGU1ip-slcUqcLbv_HqcpuYIvnrGfdzyeN0kIoxmL690uY7nkab5Y6IxTxjJKBeXZ4UlyOl88nWMpT5IXIewo5Xkh2PPkhHMqpeD8NIG1q_qudNi4wQaC3pDbpiuxIdbfu77zrfVDzKot-ltLMMIhkGFryRfbtw59uukdhuAqUnZ7b7A_vidIwtFHJrjwMnlWYxPsq8f9LPl29XFzeZ2uPi9vLs9XaVWI2KRGpatCc6Qqt4aZyjDJ81rpmgpVWspUEX-oBKJQtag1NWiFEUqXpcmpYOIseTvV3WIDd71rYyPQoYPr8xWMZ5QuChHJ-5F9M7F3ffdrb8MArQuVbRr0ttsH0HE6WuVM_ptkUhVSah1JNZEPA-ptPTfBKIyewQ5GO2C0BkbP4MEzOETp68dH9mVrzSz8a1IEPkzAb9fY438XhuXFTQyiPJ3kLgz2MMux_wkLKWQB3z8tQX29-HG15mvYiD9YHrNN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917857799</pqid></control><display><type>article</type><title>Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>KERSHAW, S. ; CRASQUIN, S. ; LI, Y. ; COLLIN, P.-Y. ; FOREL, M.-B. ; MU, X. ; BAUD, A. ; WANG, Y. ; XIE, S. ; MAURER, F. ; GUO, L.</creator><creatorcontrib>KERSHAW, S. ; CRASQUIN, S. ; LI, Y. ; COLLIN, P.-Y. ; FOREL, M.-B. ; MU, X. ; BAUD, A. ; WANG, Y. ; XIE, S. ; MAURER, F. ; GUO, L.</creatorcontrib><description>Permian–Triassic boundary microbialites (PTBMs) are thin (0.05–15 m) carbonates formed after the end‐Permian mass extinction. They comprise Renalcis‐group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. PTBMs are abundant in low‐latitude shallow‐marine carbonate shelves in central Tethyan continents but are rare in higher latitudes, likely inhibited by clastic supply on Pangaea margins. PTBMs occupied broadly similar environments to Late Permian reefs in Tethys, but extended into deeper waters. Late Permian reefs are also rich in microbes (and cements), so post‐extinction seawater carbonate saturation was likely similar to the Late Permian. However, PTBMs lack widespread abundant inorganic carbonate cement fans, so a previous interpretation that anoxic bicarbonate‐rich water upwelled to rapidly increase carbonate saturation of shallow seawater, post‐extinction, is problematic. Preliminary pyrite framboid evidence shows anoxia in PTBM facies, but interbedded shelly faunas indicate oxygenated water, perhaps there was short‐term pulsing of normally saturated anoxic water from the oxygen‐minimum zone to surface waters. In Tethys, PTBMs show geographic variations: (i) in south China, PTBMs are mostly thrombolites in open shelf settings, largely recrystallised, with remnant structure of Renalcis‐group calcimicrobes; (ii) in south Turkey, in shallow waters, stromatolites and thrombolites, lacking calcimicrobes, are interbedded, likely depth‐controlled; and (iii) in the Middle East, especially Iran, stromatolites and thrombolites (calcimicrobes uncommon) occur in different sites on open shelves, where controls are unclear. Thus, PTBMs were under more complex control than previously portrayed, with local facies control playing a significant role in their structure and composition.</description><identifier>ISSN: 1472-4677</identifier><identifier>EISSN: 1472-4669</identifier><identifier>DOI: 10.1111/j.1472-4669.2011.00302.x</identifier><identifier>PMID: 22077322</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>China ; Earth Sciences ; Environmental Microbiology ; Environmental Sciences ; Fossils ; Geologic Sediments - chemistry ; Geologic Sediments - microbiology ; Geological Phenomena ; Global Changes ; Middle East ; Paleontology ; Sciences of the Universe ; Stratigraphy ; Turkey</subject><ispartof>Geobiology, 2012-01, Vol.10 (1), p.25-47</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2011 Blackwell Publishing Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5372-9a89c592a084ed1dcd1724f89f038be018503083aa38f3f90dae3d389bbd40313</citedby><cites>FETCH-LOGICAL-c5372-9a89c592a084ed1dcd1724f89f038be018503083aa38f3f90dae3d389bbd40313</cites><orcidid>0000-0003-4358-3827 ; 0000-0001-7272-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1472-4669.2011.00302.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1472-4669.2011.00302.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22077322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00653031$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>KERSHAW, S.</creatorcontrib><creatorcontrib>CRASQUIN, S.</creatorcontrib><creatorcontrib>LI, Y.</creatorcontrib><creatorcontrib>COLLIN, P.-Y.</creatorcontrib><creatorcontrib>FOREL, M.-B.</creatorcontrib><creatorcontrib>MU, X.</creatorcontrib><creatorcontrib>BAUD, A.</creatorcontrib><creatorcontrib>WANG, Y.</creatorcontrib><creatorcontrib>XIE, S.</creatorcontrib><creatorcontrib>MAURER, F.</creatorcontrib><creatorcontrib>GUO, L.</creatorcontrib><title>Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis</title><title>Geobiology</title><addtitle>Geobiology</addtitle><description>Permian–Triassic boundary microbialites (PTBMs) are thin (0.05–15 m) carbonates formed after the end‐Permian mass extinction. They comprise Renalcis‐group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. PTBMs are abundant in low‐latitude shallow‐marine carbonate shelves in central Tethyan continents but are rare in higher latitudes, likely inhibited by clastic supply on Pangaea margins. PTBMs occupied broadly similar environments to Late Permian reefs in Tethys, but extended into deeper waters. Late Permian reefs are also rich in microbes (and cements), so post‐extinction seawater carbonate saturation was likely similar to the Late Permian. However, PTBMs lack widespread abundant inorganic carbonate cement fans, so a previous interpretation that anoxic bicarbonate‐rich water upwelled to rapidly increase carbonate saturation of shallow seawater, post‐extinction, is problematic. Preliminary pyrite framboid evidence shows anoxia in PTBM facies, but interbedded shelly faunas indicate oxygenated water, perhaps there was short‐term pulsing of normally saturated anoxic water from the oxygen‐minimum zone to surface waters. In Tethys, PTBMs show geographic variations: (i) in south China, PTBMs are mostly thrombolites in open shelf settings, largely recrystallised, with remnant structure of Renalcis‐group calcimicrobes; (ii) in south Turkey, in shallow waters, stromatolites and thrombolites, lacking calcimicrobes, are interbedded, likely depth‐controlled; and (iii) in the Middle East, especially Iran, stromatolites and thrombolites (calcimicrobes uncommon) occur in different sites on open shelves, where controls are unclear. Thus, PTBMs were under more complex control than previously portrayed, with local facies control playing a significant role in their structure and composition.</description><subject>China</subject><subject>Earth Sciences</subject><subject>Environmental Microbiology</subject><subject>Environmental Sciences</subject><subject>Fossils</subject><subject>Geologic Sediments - chemistry</subject><subject>Geologic Sediments - microbiology</subject><subject>Geological Phenomena</subject><subject>Global Changes</subject><subject>Middle East</subject><subject>Paleontology</subject><subject>Sciences of the Universe</subject><subject>Stratigraphy</subject><subject>Turkey</subject><issn>1472-4677</issn><issn>1472-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEoqXwF5BviEOCP5K1jbi0Fd1W2gUkFiFxGU1ip-slcUqcLbv_HqcpuYIvnrGfdzyeN0kIoxmL690uY7nkab5Y6IxTxjJKBeXZ4UlyOl88nWMpT5IXIewo5Xkh2PPkhHMqpeD8NIG1q_qudNi4wQaC3pDbpiuxIdbfu77zrfVDzKot-ltLMMIhkGFryRfbtw59uukdhuAqUnZ7b7A_vidIwtFHJrjwMnlWYxPsq8f9LPl29XFzeZ2uPi9vLs9XaVWI2KRGpatCc6Qqt4aZyjDJ81rpmgpVWspUEX-oBKJQtag1NWiFEUqXpcmpYOIseTvV3WIDd71rYyPQoYPr8xWMZ5QuChHJ-5F9M7F3ffdrb8MArQuVbRr0ttsH0HE6WuVM_ptkUhVSah1JNZEPA-ptPTfBKIyewQ5GO2C0BkbP4MEzOETp68dH9mVrzSz8a1IEPkzAb9fY438XhuXFTQyiPJ3kLgz2MMux_wkLKWQB3z8tQX29-HG15mvYiD9YHrNN</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>KERSHAW, S.</creator><creator>CRASQUIN, S.</creator><creator>LI, Y.</creator><creator>COLLIN, P.-Y.</creator><creator>FOREL, M.-B.</creator><creator>MU, X.</creator><creator>BAUD, A.</creator><creator>WANG, Y.</creator><creator>XIE, S.</creator><creator>MAURER, F.</creator><creator>GUO, L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4358-3827</orcidid><orcidid>https://orcid.org/0000-0001-7272-3222</orcidid></search><sort><creationdate>201201</creationdate><title>Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis</title><author>KERSHAW, S. ; CRASQUIN, S. ; LI, Y. ; COLLIN, P.-Y. ; FOREL, M.-B. ; MU, X. ; BAUD, A. ; WANG, Y. ; XIE, S. ; MAURER, F. ; GUO, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5372-9a89c592a084ed1dcd1724f89f038be018503083aa38f3f90dae3d389bbd40313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>China</topic><topic>Earth Sciences</topic><topic>Environmental Microbiology</topic><topic>Environmental Sciences</topic><topic>Fossils</topic><topic>Geologic Sediments - chemistry</topic><topic>Geologic Sediments - microbiology</topic><topic>Geological Phenomena</topic><topic>Global Changes</topic><topic>Middle East</topic><topic>Paleontology</topic><topic>Sciences of the Universe</topic><topic>Stratigraphy</topic><topic>Turkey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KERSHAW, S.</creatorcontrib><creatorcontrib>CRASQUIN, S.</creatorcontrib><creatorcontrib>LI, Y.</creatorcontrib><creatorcontrib>COLLIN, P.-Y.</creatorcontrib><creatorcontrib>FOREL, M.-B.</creatorcontrib><creatorcontrib>MU, X.</creatorcontrib><creatorcontrib>BAUD, A.</creatorcontrib><creatorcontrib>WANG, Y.</creatorcontrib><creatorcontrib>XIE, S.</creatorcontrib><creatorcontrib>MAURER, F.</creatorcontrib><creatorcontrib>GUO, L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KERSHAW, S.</au><au>CRASQUIN, S.</au><au>LI, Y.</au><au>COLLIN, P.-Y.</au><au>FOREL, M.-B.</au><au>MU, X.</au><au>BAUD, A.</au><au>WANG, Y.</au><au>XIE, S.</au><au>MAURER, F.</au><au>GUO, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis</atitle><jtitle>Geobiology</jtitle><addtitle>Geobiology</addtitle><date>2012-01</date><risdate>2012</risdate><volume>10</volume><issue>1</issue><spage>25</spage><epage>47</epage><pages>25-47</pages><issn>1472-4677</issn><eissn>1472-4669</eissn><abstract>Permian–Triassic boundary microbialites (PTBMs) are thin (0.05–15 m) carbonates formed after the end‐Permian mass extinction. They comprise Renalcis‐group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. PTBMs are abundant in low‐latitude shallow‐marine carbonate shelves in central Tethyan continents but are rare in higher latitudes, likely inhibited by clastic supply on Pangaea margins. PTBMs occupied broadly similar environments to Late Permian reefs in Tethys, but extended into deeper waters. Late Permian reefs are also rich in microbes (and cements), so post‐extinction seawater carbonate saturation was likely similar to the Late Permian. However, PTBMs lack widespread abundant inorganic carbonate cement fans, so a previous interpretation that anoxic bicarbonate‐rich water upwelled to rapidly increase carbonate saturation of shallow seawater, post‐extinction, is problematic. Preliminary pyrite framboid evidence shows anoxia in PTBM facies, but interbedded shelly faunas indicate oxygenated water, perhaps there was short‐term pulsing of normally saturated anoxic water from the oxygen‐minimum zone to surface waters. In Tethys, PTBMs show geographic variations: (i) in south China, PTBMs are mostly thrombolites in open shelf settings, largely recrystallised, with remnant structure of Renalcis‐group calcimicrobes; (ii) in south Turkey, in shallow waters, stromatolites and thrombolites, lacking calcimicrobes, are interbedded, likely depth‐controlled; and (iii) in the Middle East, especially Iran, stromatolites and thrombolites (calcimicrobes uncommon) occur in different sites on open shelves, where controls are unclear. Thus, PTBMs were under more complex control than previously portrayed, with local facies control playing a significant role in their structure and composition.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22077322</pmid><doi>10.1111/j.1472-4669.2011.00302.x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4358-3827</orcidid><orcidid>https://orcid.org/0000-0001-7272-3222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1472-4677
ispartof Geobiology, 2012-01, Vol.10 (1), p.25-47
issn 1472-4677
1472-4669
language eng
recordid cdi_hal_primary_oai_HAL_hal_00653031v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects China
Earth Sciences
Environmental Microbiology
Environmental Sciences
Fossils
Geologic Sediments - chemistry
Geologic Sediments - microbiology
Geological Phenomena
Global Changes
Middle East
Paleontology
Sciences of the Universe
Stratigraphy
Turkey
title Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbialites%20and%20global%20environmental%20change%20across%20the%20Permian-Triassic%20boundary:%20a%20synthesis&rft.jtitle=Geobiology&rft.au=KERSHAW,%20S.&rft.date=2012-01&rft.volume=10&rft.issue=1&rft.spage=25&rft.epage=47&rft.pages=25-47&rft.issn=1472-4677&rft.eissn=1472-4669&rft_id=info:doi/10.1111/j.1472-4669.2011.00302.x&rft_dat=%3Cproquest_hal_p%3E917857799%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917857799&rft_id=info:pmid/22077322&rfr_iscdi=true