On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor

The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2011-08, Vol.54 (17), p.4117-4126
Hauptverfasser: Sheu, Tony W.H., Solovchuk, Maxim A., Chen, Alex W.J., Thiriet, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4126
container_issue 17
container_start_page 4117
container_title International journal of heat and mass transfer
container_volume 54
creator Sheu, Tony W.H.
Solovchuk, Maxim A.
Chen, Alex W.J.
Thiriet, Marc
description The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution.
doi_str_mv 10.1016/j.ijheatmasstransfer.2011.03.045
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00651161v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931011001918</els_id><sourcerecordid>1671426199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxhtRcFx9h1zE9dBtVae707m5LOoqA3vRc8ikK07G9B-T9MDefAff0Ccx4yx7EUQIVFL1q69CfUVxiVAhYPfmULnDnnQadYwp6ClaClUNiBXwCpr2UbHBXsiyxl4-LjYAKErJEZ4Wz2I8nJ7QdJvi2-3EdD5mXmNyJv768TPtKYza55v1qxtYLi3eTV_ZOA_kmZ0DywhbAg3OJDdPbLYs0bhQ0GkNxMjTUf8puIl5d6TcsI5zeF48sdpHenEfL4ov7999vr4pt7cfPl5fbUvTyjaVsm81N5I3UljLDQktLRLnKGinbbvrtWx64IS1kBJasat3MAy2ll1jgIzhF8Xrs-5ee7UEN-pwp2bt1M3VVp1yAF2L2OERM_vqzC5h_r5STGp00ZD3eqK8EtX3kkvgAJm8_CeJncCm7lDKjL49oybMMQayD79AUCf31EH97Z46uaeAq-xelnh5P01Ho73NjHHxQadualGLRmTu05mjvNCjyyrROJpM9iaQSWqY3f8P_Q1tXL_C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671426199</pqid></control><display><type>article</type><title>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sheu, Tony W.H. ; Solovchuk, Maxim A. ; Chen, Alex W.J. ; Thiriet, Marc</creator><creatorcontrib>Sheu, Tony W.H. ; Solovchuk, Maxim A. ; Chen, Alex W.J. ; Thiriet, Marc</creatorcontrib><description>The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2011.03.045</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acoustic coupling ; Acoustic streaming ; Acoustics ; Acoustics–thermal–fluid ; Biological and medical sciences ; Biomechanics ; Blood convective cooling ; Cooling ; Engineering Sciences ; Gastroenterology. Liver. Pancreas. Abdomen ; HIFU ; Homogenizing ; Liver tumor ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Mathematical analysis ; Mathematical models ; Mechanics ; Medical sciences ; Other treatments ; Perfusion ; Physics ; Treatment. General aspects ; Tumors</subject><ispartof>International journal of heat and mass transfer, 2011-08, Vol.54 (17), p.4117-4126</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</citedby><cites>FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.03.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24272747$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00651161$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheu, Tony W.H.</creatorcontrib><creatorcontrib>Solovchuk, Maxim A.</creatorcontrib><creatorcontrib>Chen, Alex W.J.</creatorcontrib><creatorcontrib>Thiriet, Marc</creatorcontrib><title>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</title><title>International journal of heat and mass transfer</title><description>The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution.</description><subject>Acoustic coupling</subject><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Acoustics–thermal–fluid</subject><subject>Biological and medical sciences</subject><subject>Biomechanics</subject><subject>Blood convective cooling</subject><subject>Cooling</subject><subject>Engineering Sciences</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>HIFU</subject><subject>Homogenizing</subject><subject>Liver tumor</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Medical sciences</subject><subject>Other treatments</subject><subject>Perfusion</subject><subject>Physics</subject><subject>Treatment. General aspects</subject><subject>Tumors</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc-KFDEQxhtRcFx9h1zE9dBtVae707m5LOoqA3vRc8ikK07G9B-T9MDefAff0Ccx4yx7EUQIVFL1q69CfUVxiVAhYPfmULnDnnQadYwp6ClaClUNiBXwCpr2UbHBXsiyxl4-LjYAKErJEZ4Wz2I8nJ7QdJvi2-3EdD5mXmNyJv768TPtKYza55v1qxtYLi3eTV_ZOA_kmZ0DywhbAg3OJDdPbLYs0bhQ0GkNxMjTUf8puIl5d6TcsI5zeF48sdpHenEfL4ov7999vr4pt7cfPl5fbUvTyjaVsm81N5I3UljLDQktLRLnKGinbbvrtWx64IS1kBJasat3MAy2ll1jgIzhF8Xrs-5ee7UEN-pwp2bt1M3VVp1yAF2L2OERM_vqzC5h_r5STGp00ZD3eqK8EtX3kkvgAJm8_CeJncCm7lDKjL49oybMMQayD79AUCf31EH97Z46uaeAq-xelnh5P01Ho73NjHHxQadualGLRmTu05mjvNCjyyrROJpM9iaQSWqY3f8P_Q1tXL_C</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Sheu, Tony W.H.</creator><creator>Solovchuk, Maxim A.</creator><creator>Chen, Alex W.J.</creator><creator>Thiriet, Marc</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>20110801</creationdate><title>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</title><author>Sheu, Tony W.H. ; Solovchuk, Maxim A. ; Chen, Alex W.J. ; Thiriet, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic coupling</topic><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Acoustics–thermal–fluid</topic><topic>Biological and medical sciences</topic><topic>Biomechanics</topic><topic>Blood convective cooling</topic><topic>Cooling</topic><topic>Engineering Sciences</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>HIFU</topic><topic>Homogenizing</topic><topic>Liver tumor</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Medical sciences</topic><topic>Other treatments</topic><topic>Perfusion</topic><topic>Physics</topic><topic>Treatment. General aspects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheu, Tony W.H.</creatorcontrib><creatorcontrib>Solovchuk, Maxim A.</creatorcontrib><creatorcontrib>Chen, Alex W.J.</creatorcontrib><creatorcontrib>Thiriet, Marc</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheu, Tony W.H.</au><au>Solovchuk, Maxim A.</au><au>Chen, Alex W.J.</au><au>Thiriet, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>54</volume><issue>17</issue><spage>4117</spage><epage>4126</epage><pages>4117-4126</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2011.03.045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2011-08, Vol.54 (17), p.4117-4126
issn 0017-9310
1879-2189
language eng
recordid cdi_hal_primary_oai_HAL_hal_00651161v1
source Elsevier ScienceDirect Journals Complete
subjects Acoustic coupling
Acoustic streaming
Acoustics
Acoustics–thermal–fluid
Biological and medical sciences
Biomechanics
Blood convective cooling
Cooling
Engineering Sciences
Gastroenterology. Liver. Pancreas. Abdomen
HIFU
Homogenizing
Liver tumor
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Mathematical analysis
Mathematical models
Mechanics
Medical sciences
Other treatments
Perfusion
Physics
Treatment. General aspects
Tumors
title On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T03%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20acoustics%E2%80%93thermal%E2%80%93fluid%20coupling%20model%20for%20the%20prediction%20of%20temperature%20elevation%20in%20liver%20tumor&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Sheu,%20Tony%20W.H.&rft.date=2011-08-01&rft.volume=54&rft.issue=17&rft.spage=4117&rft.epage=4126&rft.pages=4117-4126&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2011.03.045&rft_dat=%3Cproquest_hal_p%3E1671426199%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671426199&rft_id=info:pmid/&rft_els_id=S0017931011001918&rfr_iscdi=true