On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor
The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The no...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2011-08, Vol.54 (17), p.4117-4126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4126 |
---|---|
container_issue | 17 |
container_start_page | 4117 |
container_title | International journal of heat and mass transfer |
container_volume | 54 |
creator | Sheu, Tony W.H. Solovchuk, Maxim A. Chen, Alex W.J. Thiriet, Marc |
description | The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2011.03.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00651161v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931011001918</els_id><sourcerecordid>1671426199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxhtRcFx9h1zE9dBtVae707m5LOoqA3vRc8ikK07G9B-T9MDefAff0Ccx4yx7EUQIVFL1q69CfUVxiVAhYPfmULnDnnQadYwp6ClaClUNiBXwCpr2UbHBXsiyxl4-LjYAKErJEZ4Wz2I8nJ7QdJvi2-3EdD5mXmNyJv768TPtKYza55v1qxtYLi3eTV_ZOA_kmZ0DywhbAg3OJDdPbLYs0bhQ0GkNxMjTUf8puIl5d6TcsI5zeF48sdpHenEfL4ov7999vr4pt7cfPl5fbUvTyjaVsm81N5I3UljLDQktLRLnKGinbbvrtWx64IS1kBJasat3MAy2ll1jgIzhF8Xrs-5ee7UEN-pwp2bt1M3VVp1yAF2L2OERM_vqzC5h_r5STGp00ZD3eqK8EtX3kkvgAJm8_CeJncCm7lDKjL49oybMMQayD79AUCf31EH97Z46uaeAq-xelnh5P01Ho73NjHHxQadualGLRmTu05mjvNCjyyrROJpM9iaQSWqY3f8P_Q1tXL_C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671426199</pqid></control><display><type>article</type><title>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sheu, Tony W.H. ; Solovchuk, Maxim A. ; Chen, Alex W.J. ; Thiriet, Marc</creator><creatorcontrib>Sheu, Tony W.H. ; Solovchuk, Maxim A. ; Chen, Alex W.J. ; Thiriet, Marc</creatorcontrib><description>The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2011.03.045</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acoustic coupling ; Acoustic streaming ; Acoustics ; Acoustics–thermal–fluid ; Biological and medical sciences ; Biomechanics ; Blood convective cooling ; Cooling ; Engineering Sciences ; Gastroenterology. Liver. Pancreas. Abdomen ; HIFU ; Homogenizing ; Liver tumor ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Mathematical analysis ; Mathematical models ; Mechanics ; Medical sciences ; Other treatments ; Perfusion ; Physics ; Treatment. General aspects ; Tumors</subject><ispartof>International journal of heat and mass transfer, 2011-08, Vol.54 (17), p.4117-4126</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</citedby><cites>FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.03.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24272747$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00651161$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheu, Tony W.H.</creatorcontrib><creatorcontrib>Solovchuk, Maxim A.</creatorcontrib><creatorcontrib>Chen, Alex W.J.</creatorcontrib><creatorcontrib>Thiriet, Marc</creatorcontrib><title>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</title><title>International journal of heat and mass transfer</title><description>The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution.</description><subject>Acoustic coupling</subject><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Acoustics–thermal–fluid</subject><subject>Biological and medical sciences</subject><subject>Biomechanics</subject><subject>Blood convective cooling</subject><subject>Cooling</subject><subject>Engineering Sciences</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>HIFU</subject><subject>Homogenizing</subject><subject>Liver tumor</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Medical sciences</subject><subject>Other treatments</subject><subject>Perfusion</subject><subject>Physics</subject><subject>Treatment. General aspects</subject><subject>Tumors</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc-KFDEQxhtRcFx9h1zE9dBtVae707m5LOoqA3vRc8ikK07G9B-T9MDefAff0Ccx4yx7EUQIVFL1q69CfUVxiVAhYPfmULnDnnQadYwp6ClaClUNiBXwCpr2UbHBXsiyxl4-LjYAKErJEZ4Wz2I8nJ7QdJvi2-3EdD5mXmNyJv768TPtKYza55v1qxtYLi3eTV_ZOA_kmZ0DywhbAg3OJDdPbLYs0bhQ0GkNxMjTUf8puIl5d6TcsI5zeF48sdpHenEfL4ov7999vr4pt7cfPl5fbUvTyjaVsm81N5I3UljLDQktLRLnKGinbbvrtWx64IS1kBJasat3MAy2ll1jgIzhF8Xrs-5ee7UEN-pwp2bt1M3VVp1yAF2L2OERM_vqzC5h_r5STGp00ZD3eqK8EtX3kkvgAJm8_CeJncCm7lDKjL49oybMMQayD79AUCf31EH97Z46uaeAq-xelnh5P01Ho73NjHHxQadualGLRmTu05mjvNCjyyrROJpM9iaQSWqY3f8P_Q1tXL_C</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Sheu, Tony W.H.</creator><creator>Solovchuk, Maxim A.</creator><creator>Chen, Alex W.J.</creator><creator>Thiriet, Marc</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>20110801</creationdate><title>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</title><author>Sheu, Tony W.H. ; Solovchuk, Maxim A. ; Chen, Alex W.J. ; Thiriet, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-985a3c93497ff3ce7a9f1e3317ebaf5b8a94803e12799057b2b0ddf2964c0ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic coupling</topic><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Acoustics–thermal–fluid</topic><topic>Biological and medical sciences</topic><topic>Biomechanics</topic><topic>Blood convective cooling</topic><topic>Cooling</topic><topic>Engineering Sciences</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>HIFU</topic><topic>Homogenizing</topic><topic>Liver tumor</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Medical sciences</topic><topic>Other treatments</topic><topic>Perfusion</topic><topic>Physics</topic><topic>Treatment. General aspects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheu, Tony W.H.</creatorcontrib><creatorcontrib>Solovchuk, Maxim A.</creatorcontrib><creatorcontrib>Chen, Alex W.J.</creatorcontrib><creatorcontrib>Thiriet, Marc</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheu, Tony W.H.</au><au>Solovchuk, Maxim A.</au><au>Chen, Alex W.J.</au><au>Thiriet, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>54</volume><issue>17</issue><spage>4117</spage><epage>4126</epage><pages>4117-4126</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The present study is aimed at predicting liver tumor temperature during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics–thermal–fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. Energy equation for thermal conduction involves two heat sinks to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the development of the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that acoustic streaming effect can affect the blood flow distribution in hepatic arterial branches and leads to the mass flux redistribution.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2011.03.045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2011-08, Vol.54 (17), p.4117-4126 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00651161v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acoustic coupling Acoustic streaming Acoustics Acoustics–thermal–fluid Biological and medical sciences Biomechanics Blood convective cooling Cooling Engineering Sciences Gastroenterology. Liver. Pancreas. Abdomen HIFU Homogenizing Liver tumor Liver. Biliary tract. Portal circulation. Exocrine pancreas Mathematical analysis Mathematical models Mechanics Medical sciences Other treatments Perfusion Physics Treatment. General aspects Tumors |
title | On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T03%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20acoustics%E2%80%93thermal%E2%80%93fluid%20coupling%20model%20for%20the%20prediction%20of%20temperature%20elevation%20in%20liver%20tumor&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Sheu,%20Tony%20W.H.&rft.date=2011-08-01&rft.volume=54&rft.issue=17&rft.spage=4117&rft.epage=4126&rft.pages=4117-4126&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2011.03.045&rft_dat=%3Cproquest_hal_p%3E1671426199%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671426199&rft_id=info:pmid/&rft_els_id=S0017931011001918&rfr_iscdi=true |