On the Optimal Stacking of Information-Plus-Noise Matrices
Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance ver...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2011-02, Vol.59 (2), p.506-514 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 2 |
container_start_page | 506 |
container_title | IEEE transactions on signal processing |
container_volume | 59 |
creator | Ryan, Oeyvind |
description | Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically. |
doi_str_mv | 10.1109/TSP.2010.2091276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00648043v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5624651</ieee_id><sourcerecordid>861535394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</originalsourceid><addsrcrecordid>eNpdkElLAzEYhgdRcL0LXgZBxMPU7Iu3Ii6FagUVvIWYSWzqdFKTGcF_b2pLD56-7fm2tyiOIRhACOTly_PTAIEcISAh4myr2IOSwAoQzrazDyiuqOBvu8V-SjMAICGS7RVXk7bspracLDo_10353Gnz6duPMrhy1LoQ57rzoa2emj5Vj8EnWz7oLnpj02Gx43ST7NHaHhSvtzcv1_fVeHI3uh6OK0OQ6CpRM6YpQbbGwHHHay4xcUwjxmpnOaVMWgjrdySNBIi-C20xqYmzTBqtOcYHxcVq7lQ3ahHzmfFHBe3V_XCsljkAGBGA4G-Y2fMVu4jhq7epU3OfjG0a3drQJyUYpJhiSTJ5-o-chT62-RElsJCCyr_VYAWZGFKK1m32Q6CWsqssu1rKrtay55az9VydjG5c1K3xadOHcGa4BJk7WXHeWrspU4YIoxD_ArK5iH4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>838985973</pqid></control><display><type>article</type><title>On the Optimal Stacking of Information-Plus-Noise Matrices</title><source>IEEE Electronic Library (IEL)</source><creator>Ryan, Oeyvind</creator><creatorcontrib>Ryan, Oeyvind</creatorcontrib><description>Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2010.2091276</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Compounds ; Computer Science ; Covariance matrix ; Deconvolution ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Estimators ; Exact sciences and technology ; free convolution ; Gaussian ; Gaussian matrices ; Information Theory ; Information, signal and communications theory ; Mathematical analysis ; Mathematics ; Miscellaneous ; Moment methods ; Noise ; Optimization ; random matrices ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spectral analysis ; spectrum estimation ; Stacking ; Telecommunications and information theory ; Variance</subject><ispartof>IEEE transactions on signal processing, 2011-02, Vol.59 (2), p.506-514</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</citedby><cites>FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5624651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5624651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23763790$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-00648043$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Oeyvind</creatorcontrib><title>On the Optimal Stacking of Information-Plus-Noise Matrices</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Compounds</subject><subject>Computer Science</subject><subject>Covariance matrix</subject><subject>Deconvolution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>free convolution</subject><subject>Gaussian</subject><subject>Gaussian matrices</subject><subject>Information Theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Moment methods</subject><subject>Noise</subject><subject>Optimization</subject><subject>random matrices</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectral analysis</subject><subject>spectrum estimation</subject><subject>Stacking</subject><subject>Telecommunications and information theory</subject><subject>Variance</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkElLAzEYhgdRcL0LXgZBxMPU7Iu3Ii6FagUVvIWYSWzqdFKTGcF_b2pLD56-7fm2tyiOIRhACOTly_PTAIEcISAh4myr2IOSwAoQzrazDyiuqOBvu8V-SjMAICGS7RVXk7bspracLDo_10353Gnz6duPMrhy1LoQ57rzoa2emj5Vj8EnWz7oLnpj02Gx43ST7NHaHhSvtzcv1_fVeHI3uh6OK0OQ6CpRM6YpQbbGwHHHay4xcUwjxmpnOaVMWgjrdySNBIi-C20xqYmzTBqtOcYHxcVq7lQ3ahHzmfFHBe3V_XCsljkAGBGA4G-Y2fMVu4jhq7epU3OfjG0a3drQJyUYpJhiSTJ5-o-chT62-RElsJCCyr_VYAWZGFKK1m32Q6CWsqssu1rKrtay55az9VydjG5c1K3xadOHcGa4BJk7WXHeWrspU4YIoxD_ArK5iH4</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Ryan, Oeyvind</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110201</creationdate><title>On the Optimal Stacking of Information-Plus-Noise Matrices</title><author>Ryan, Oeyvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Compounds</topic><topic>Computer Science</topic><topic>Covariance matrix</topic><topic>Deconvolution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>free convolution</topic><topic>Gaussian</topic><topic>Gaussian matrices</topic><topic>Information Theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Moment methods</topic><topic>Noise</topic><topic>Optimization</topic><topic>random matrices</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectral analysis</topic><topic>spectrum estimation</topic><topic>Stacking</topic><topic>Telecommunications and information theory</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Oeyvind</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryan, Oeyvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Optimal Stacking of Information-Plus-Noise Matrices</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>59</volume><issue>2</issue><spage>506</spage><epage>514</epage><pages>506-514</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2010.2091276</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2011-02, Vol.59 (2), p.506-514 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00648043v1 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Asymptotic properties Compounds Computer Science Covariance matrix Deconvolution Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Estimators Exact sciences and technology free convolution Gaussian Gaussian matrices Information Theory Information, signal and communications theory Mathematical analysis Mathematics Miscellaneous Moment methods Noise Optimization random matrices Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Spectral analysis spectrum estimation Stacking Telecommunications and information theory Variance |
title | On the Optimal Stacking of Information-Plus-Noise Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Optimal%20Stacking%20of%20Information-Plus-Noise%20Matrices&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ryan,%20Oeyvind&rft.date=2011-02-01&rft.volume=59&rft.issue=2&rft.spage=506&rft.epage=514&rft.pages=506-514&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2010.2091276&rft_dat=%3Cproquest_RIE%3E861535394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=838985973&rft_id=info:pmid/&rft_ieee_id=5624651&rfr_iscdi=true |