On the Optimal Stacking of Information-Plus-Noise Matrices

Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-02, Vol.59 (2), p.506-514
1. Verfasser: Ryan, Oeyvind
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 2
container_start_page 506
container_title IEEE transactions on signal processing
container_volume 59
creator Ryan, Oeyvind
description Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically.
doi_str_mv 10.1109/TSP.2010.2091276
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00648043v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5624651</ieee_id><sourcerecordid>861535394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</originalsourceid><addsrcrecordid>eNpdkElLAzEYhgdRcL0LXgZBxMPU7Iu3Ii6FagUVvIWYSWzqdFKTGcF_b2pLD56-7fm2tyiOIRhACOTly_PTAIEcISAh4myr2IOSwAoQzrazDyiuqOBvu8V-SjMAICGS7RVXk7bspracLDo_10353Gnz6duPMrhy1LoQ57rzoa2emj5Vj8EnWz7oLnpj02Gx43ST7NHaHhSvtzcv1_fVeHI3uh6OK0OQ6CpRM6YpQbbGwHHHay4xcUwjxmpnOaVMWgjrdySNBIi-C20xqYmzTBqtOcYHxcVq7lQ3ahHzmfFHBe3V_XCsljkAGBGA4G-Y2fMVu4jhq7epU3OfjG0a3drQJyUYpJhiSTJ5-o-chT62-RElsJCCyr_VYAWZGFKK1m32Q6CWsqssu1rKrtay55az9VydjG5c1K3xadOHcGa4BJk7WXHeWrspU4YIoxD_ArK5iH4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>838985973</pqid></control><display><type>article</type><title>On the Optimal Stacking of Information-Plus-Noise Matrices</title><source>IEEE Electronic Library (IEL)</source><creator>Ryan, Oeyvind</creator><creatorcontrib>Ryan, Oeyvind</creatorcontrib><description>Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2010.2091276</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Compounds ; Computer Science ; Covariance matrix ; Deconvolution ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Estimators ; Exact sciences and technology ; free convolution ; Gaussian ; Gaussian matrices ; Information Theory ; Information, signal and communications theory ; Mathematical analysis ; Mathematics ; Miscellaneous ; Moment methods ; Noise ; Optimization ; random matrices ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spectral analysis ; spectrum estimation ; Stacking ; Telecommunications and information theory ; Variance</subject><ispartof>IEEE transactions on signal processing, 2011-02, Vol.59 (2), p.506-514</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</citedby><cites>FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5624651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5624651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23763790$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-00648043$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Oeyvind</creatorcontrib><title>On the Optimal Stacking of Information-Plus-Noise Matrices</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Compounds</subject><subject>Computer Science</subject><subject>Covariance matrix</subject><subject>Deconvolution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>free convolution</subject><subject>Gaussian</subject><subject>Gaussian matrices</subject><subject>Information Theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Moment methods</subject><subject>Noise</subject><subject>Optimization</subject><subject>random matrices</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectral analysis</subject><subject>spectrum estimation</subject><subject>Stacking</subject><subject>Telecommunications and information theory</subject><subject>Variance</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkElLAzEYhgdRcL0LXgZBxMPU7Iu3Ii6FagUVvIWYSWzqdFKTGcF_b2pLD56-7fm2tyiOIRhACOTly_PTAIEcISAh4myr2IOSwAoQzrazDyiuqOBvu8V-SjMAICGS7RVXk7bspracLDo_10353Gnz6duPMrhy1LoQ57rzoa2emj5Vj8EnWz7oLnpj02Gx43ST7NHaHhSvtzcv1_fVeHI3uh6OK0OQ6CpRM6YpQbbGwHHHay4xcUwjxmpnOaVMWgjrdySNBIi-C20xqYmzTBqtOcYHxcVq7lQ3ahHzmfFHBe3V_XCsljkAGBGA4G-Y2fMVu4jhq7epU3OfjG0a3drQJyUYpJhiSTJ5-o-chT62-RElsJCCyr_VYAWZGFKK1m32Q6CWsqssu1rKrtay55az9VydjG5c1K3xadOHcGa4BJk7WXHeWrspU4YIoxD_ArK5iH4</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Ryan, Oeyvind</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110201</creationdate><title>On the Optimal Stacking of Information-Plus-Noise Matrices</title><author>Ryan, Oeyvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-8d66a542ed30f7f7d7934f6a266dfe75569e11db29c9025b8ae34d4fe69caa733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Compounds</topic><topic>Computer Science</topic><topic>Covariance matrix</topic><topic>Deconvolution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>free convolution</topic><topic>Gaussian</topic><topic>Gaussian matrices</topic><topic>Information Theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Moment methods</topic><topic>Noise</topic><topic>Optimization</topic><topic>random matrices</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectral analysis</topic><topic>spectrum estimation</topic><topic>Stacking</topic><topic>Telecommunications and information theory</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Oeyvind</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryan, Oeyvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Optimal Stacking of Information-Plus-Noise Matrices</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>59</volume><issue>2</issue><spage>506</spage><epage>514</epage><pages>506-514</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Observations of the form D + X, where D is a matrix representing information, and X is a random matrix representing noise, can be grouped into a compound observation matrix, on the same information + noise form. There are many ways the observations can be stacked into such a matrix, for instance vertically, horizontally, or quadratically. An unbiased estimator for the spectrum of D can be formulated for each stacking scenario in the case of Gaussian noise. We compare these spectrum estimators for the different stacking scenarios, and show that all kinds of stacking actually decrease the variance of the corresponding spectrum estimators when compared to just taking an average of the observations, and find which stacking is optimal in this sense. When the number of observations grow, however, it is shown that the difference between the estimators is marginal, with only the cases of vertical and horizontal stackings having a higher variance asymptotically.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2010.2091276</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2011-02, Vol.59 (2), p.506-514
issn 1053-587X
1941-0476
language eng
recordid cdi_hal_primary_oai_HAL_hal_00648043v1
source IEEE Electronic Library (IEL)
subjects Applied sciences
Asymptotic properties
Compounds
Computer Science
Covariance matrix
Deconvolution
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Estimators
Exact sciences and technology
free convolution
Gaussian
Gaussian matrices
Information Theory
Information, signal and communications theory
Mathematical analysis
Mathematics
Miscellaneous
Moment methods
Noise
Optimization
random matrices
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Spectral analysis
spectrum estimation
Stacking
Telecommunications and information theory
Variance
title On the Optimal Stacking of Information-Plus-Noise Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Optimal%20Stacking%20of%20Information-Plus-Noise%20Matrices&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ryan,%20Oeyvind&rft.date=2011-02-01&rft.volume=59&rft.issue=2&rft.spage=506&rft.epage=514&rft.pages=506-514&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2010.2091276&rft_dat=%3Cproquest_RIE%3E861535394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=838985973&rft_id=info:pmid/&rft_ieee_id=5624651&rfr_iscdi=true