Fermionic structure in the sine-Gordon model: Form factors and null-vectors

The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2011-11, Vol.852 (2), p.390-440
Hauptverfasser: Jimbo, M., Miwa, T., Smirnov, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 2
container_start_page 390
container_title Nuclear physics. B
container_volume 852
creator Jimbo, M.
Miwa, T.
Smirnov, F.
description The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields.
doi_str_mv 10.1016/j.nuclphysb.2011.06.016
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00647587v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S055032131100366X</els_id><sourcerecordid>S055032131100366X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</originalsourceid><addsrcrecordid>eNqFkMFLwzAYxYMoOKd_g7l6aM2XtknrbQw3xYEXPYc0SVlGm4ykHey_N3Oyq9_lgx_vPXgPoUcgORBgz7vcTarfb4-xzSkByAnLE79CM6h5kUHF6DWakaoiWUGhuEV3Me5IOlbUM_SxMmGw3lmF4xgmNU7BYOvwuDU4WmeytQ_aOzx4bfoXvPJhwJ1Uow8RS6exm_o-O5hfcI9uOtlH8_D35-h79fq1fMs2n-v35WKTqZKVY8ZbKKg2hpu6UsALU3IqmSa85a3UwKGpCmiamoGsZaepbIgiFJhKlNK2Lubo6Zy7lb3YBzvIcBReWvG22IgTS91KXtX8AEnLz1oVfIzBdBcDEHHaT-zEZT9x2k8QJhJPzsXZaVKVgzVBRGWNU0bbkPoK7e2_GT_AoXz6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</title><source>Elsevier ScienceDirect Journals</source><creator>Jimbo, M. ; Miwa, T. ; Smirnov, F.</creator><creatorcontrib>Jimbo, M. ; Miwa, T. ; Smirnov, F.</creatorcontrib><description>The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields.</description><identifier>ISSN: 0550-3213</identifier><identifier>EISSN: 1873-1562</identifier><identifier>DOI: 10.1016/j.nuclphysb.2011.06.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>High Energy Physics - Theory ; Mathematical Physics ; Mathematics ; Physics</subject><ispartof>Nuclear physics. B, 2011-11, Vol.852 (2), p.390-440</ispartof><rights>2011 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</citedby><cites>FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S055032131100366X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00647587$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimbo, M.</creatorcontrib><creatorcontrib>Miwa, T.</creatorcontrib><creatorcontrib>Smirnov, F.</creatorcontrib><title>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</title><title>Nuclear physics. B</title><description>The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields.</description><subject>High Energy Physics - Theory</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><issn>0550-3213</issn><issn>1873-1562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAYxYMoOKd_g7l6aM2XtknrbQw3xYEXPYc0SVlGm4ykHey_N3Oyq9_lgx_vPXgPoUcgORBgz7vcTarfb4-xzSkByAnLE79CM6h5kUHF6DWakaoiWUGhuEV3Me5IOlbUM_SxMmGw3lmF4xgmNU7BYOvwuDU4WmeytQ_aOzx4bfoXvPJhwJ1Uow8RS6exm_o-O5hfcI9uOtlH8_D35-h79fq1fMs2n-v35WKTqZKVY8ZbKKg2hpu6UsALU3IqmSa85a3UwKGpCmiamoGsZaepbIgiFJhKlNK2Lubo6Zy7lb3YBzvIcBReWvG22IgTS91KXtX8AEnLz1oVfIzBdBcDEHHaT-zEZT9x2k8QJhJPzsXZaVKVgzVBRGWNU0bbkPoK7e2_GT_AoXz6</recordid><startdate>20111111</startdate><enddate>20111111</enddate><creator>Jimbo, M.</creator><creator>Miwa, T.</creator><creator>Smirnov, F.</creator><general>Elsevier B.V</general><general>North-Holland ; Elsevier [1967-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20111111</creationdate><title>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</title><author>Jimbo, M. ; Miwa, T. ; Smirnov, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>High Energy Physics - Theory</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimbo, M.</creatorcontrib><creatorcontrib>Miwa, T.</creatorcontrib><creatorcontrib>Smirnov, F.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear physics. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimbo, M.</au><au>Miwa, T.</au><au>Smirnov, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</atitle><jtitle>Nuclear physics. B</jtitle><date>2011-11-11</date><risdate>2011</risdate><volume>852</volume><issue>2</issue><spage>390</spage><epage>440</epage><pages>390-440</pages><issn>0550-3213</issn><eissn>1873-1562</eissn><abstract>The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysb.2011.06.016</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0550-3213
ispartof Nuclear physics. B, 2011-11, Vol.852 (2), p.390-440
issn 0550-3213
1873-1562
language eng
recordid cdi_hal_primary_oai_HAL_hal_00647587v1
source Elsevier ScienceDirect Journals
subjects High Energy Physics - Theory
Mathematical Physics
Mathematics
Physics
title Fermionic structure in the sine-Gordon model: Form factors and null-vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermionic%20structure%20in%20the%20sine-Gordon%20model:%20Form%20factors%20and%20null-vectors&rft.jtitle=Nuclear%20physics.%20B&rft.au=Jimbo,%20M.&rft.date=2011-11-11&rft.volume=852&rft.issue=2&rft.spage=390&rft.epage=440&rft.pages=390-440&rft.issn=0550-3213&rft.eissn=1873-1562&rft_id=info:doi/10.1016/j.nuclphysb.2011.06.016&rft_dat=%3Celsevier_hal_p%3ES055032131100366X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S055032131100366X&rfr_iscdi=true