Fermionic structure in the sine-Gordon model: Form factors and null-vectors
The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov....
Gespeichert in:
Veröffentlicht in: | Nuclear physics. B 2011-11, Vol.852 (2), p.390-440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 2 |
container_start_page | 390 |
container_title | Nuclear physics. B |
container_volume | 852 |
creator | Jimbo, M. Miwa, T. Smirnov, F. |
description | The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields. |
doi_str_mv | 10.1016/j.nuclphysb.2011.06.016 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00647587v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S055032131100366X</els_id><sourcerecordid>S055032131100366X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</originalsourceid><addsrcrecordid>eNqFkMFLwzAYxYMoOKd_g7l6aM2XtknrbQw3xYEXPYc0SVlGm4ykHey_N3Oyq9_lgx_vPXgPoUcgORBgz7vcTarfb4-xzSkByAnLE79CM6h5kUHF6DWakaoiWUGhuEV3Me5IOlbUM_SxMmGw3lmF4xgmNU7BYOvwuDU4WmeytQ_aOzx4bfoXvPJhwJ1Uow8RS6exm_o-O5hfcI9uOtlH8_D35-h79fq1fMs2n-v35WKTqZKVY8ZbKKg2hpu6UsALU3IqmSa85a3UwKGpCmiamoGsZaepbIgiFJhKlNK2Lubo6Zy7lb3YBzvIcBReWvG22IgTS91KXtX8AEnLz1oVfIzBdBcDEHHaT-zEZT9x2k8QJhJPzsXZaVKVgzVBRGWNU0bbkPoK7e2_GT_AoXz6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</title><source>Elsevier ScienceDirect Journals</source><creator>Jimbo, M. ; Miwa, T. ; Smirnov, F.</creator><creatorcontrib>Jimbo, M. ; Miwa, T. ; Smirnov, F.</creatorcontrib><description>The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields.</description><identifier>ISSN: 0550-3213</identifier><identifier>EISSN: 1873-1562</identifier><identifier>DOI: 10.1016/j.nuclphysb.2011.06.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>High Energy Physics - Theory ; Mathematical Physics ; Mathematics ; Physics</subject><ispartof>Nuclear physics. B, 2011-11, Vol.852 (2), p.390-440</ispartof><rights>2011 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</citedby><cites>FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S055032131100366X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00647587$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimbo, M.</creatorcontrib><creatorcontrib>Miwa, T.</creatorcontrib><creatorcontrib>Smirnov, F.</creatorcontrib><title>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</title><title>Nuclear physics. B</title><description>The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields.</description><subject>High Energy Physics - Theory</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><issn>0550-3213</issn><issn>1873-1562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAYxYMoOKd_g7l6aM2XtknrbQw3xYEXPYc0SVlGm4ykHey_N3Oyq9_lgx_vPXgPoUcgORBgz7vcTarfb4-xzSkByAnLE79CM6h5kUHF6DWakaoiWUGhuEV3Me5IOlbUM_SxMmGw3lmF4xgmNU7BYOvwuDU4WmeytQ_aOzx4bfoXvPJhwJ1Uow8RS6exm_o-O5hfcI9uOtlH8_D35-h79fq1fMs2n-v35WKTqZKVY8ZbKKg2hpu6UsALU3IqmSa85a3UwKGpCmiamoGsZaepbIgiFJhKlNK2Lubo6Zy7lb3YBzvIcBReWvG22IgTS91KXtX8AEnLz1oVfIzBdBcDEHHaT-zEZT9x2k8QJhJPzsXZaVKVgzVBRGWNU0bbkPoK7e2_GT_AoXz6</recordid><startdate>20111111</startdate><enddate>20111111</enddate><creator>Jimbo, M.</creator><creator>Miwa, T.</creator><creator>Smirnov, F.</creator><general>Elsevier B.V</general><general>North-Holland ; Elsevier [1967-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20111111</creationdate><title>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</title><author>Jimbo, M. ; Miwa, T. ; Smirnov, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-7b132dee7e85c173e472a6d07b7bad171953199861a8afd2a90c0216c31922b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>High Energy Physics - Theory</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimbo, M.</creatorcontrib><creatorcontrib>Miwa, T.</creatorcontrib><creatorcontrib>Smirnov, F.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear physics. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimbo, M.</au><au>Miwa, T.</au><au>Smirnov, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermionic structure in the sine-Gordon model: Form factors and null-vectors</atitle><jtitle>Nuclear physics. B</jtitle><date>2011-11-11</date><risdate>2011</risdate><volume>852</volume><issue>2</issue><spage>390</spage><epage>440</epage><pages>390-440</pages><issn>0550-3213</issn><eissn>1873-1562</eissn><abstract>The form factor bootstrap in integrable quantum field theory allows one to capture local fields in terms of infinite sequences of Laurent polynomials called ‘towers’. For the sine-Gordon model, towers are systematically described by fermions introduced some time ago by Babelon, Bernard and Smirnov. Recently the authors developed a new method for evaluating one-point functions of descendant fields, using yet another fermions which act on the space of local fields. The goal of this paper is to establish that these two fermions are one and the same object. This opens up a way for answering the longstanding question about how to identify precisely towers and local fields.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysb.2011.06.016</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0550-3213 |
ispartof | Nuclear physics. B, 2011-11, Vol.852 (2), p.390-440 |
issn | 0550-3213 1873-1562 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00647587v1 |
source | Elsevier ScienceDirect Journals |
subjects | High Energy Physics - Theory Mathematical Physics Mathematics Physics |
title | Fermionic structure in the sine-Gordon model: Form factors and null-vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermionic%20structure%20in%20the%20sine-Gordon%20model:%20Form%20factors%20and%20null-vectors&rft.jtitle=Nuclear%20physics.%20B&rft.au=Jimbo,%20M.&rft.date=2011-11-11&rft.volume=852&rft.issue=2&rft.spage=390&rft.epage=440&rft.pages=390-440&rft.issn=0550-3213&rft.eissn=1873-1562&rft_id=info:doi/10.1016/j.nuclphysb.2011.06.016&rft_dat=%3Celsevier_hal_p%3ES055032131100366X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S055032131100366X&rfr_iscdi=true |