Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context

This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2008-01, Vol.30 (1), p.43-71
Hauptverfasser: Smach, Fethi, Lemaître, Cedric, Gauthier, Jean-Paul, Miteran, Johel, Atri, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 43
container_title Journal of mathematical imaging and vision
container_volume 30
creator Smach, Fethi
Lemaître, Cedric
Gauthier, Jean-Paul
Miteran, Johel
Atri, Mohamed
description This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts. Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost. The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.
doi_str_mv 10.1007/s10851-007-0036-3
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00647554v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00647554v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-829462ecc45ed69734bd3d6d99be7294fbbfe2066b651de8e32e6f443f92a01d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZRHwK068rAptkYoq8RI7K3EmrasQR7Z5fg3fwpeRqIgli9GM7tw70hyETik5p4RkF4GSPKVJP_bFZcL30IimGU8ymfN9NCKKiUQpkh2ioxC2hJCc0WyEnubQgi8a-wkVnrkXb8HjSwjG2y46H_CbjRs86brGmiJa1wYcHV6VWzAx4Fswbt3aQce2_f66e7zBU9dGeI_H6KAumgAnv32MHmZX99NFslzNr6eTZWI4YzHJmRKSgTEihUqqjIuy4pWslCoh63d1WdbAiJSlTGkFOXAGshaC14oVhFZ8jM52dzdFoztvnwv_oV1h9WKy1INGiBRZmopX2nvpzmu8C8FD_RegRA8Y9Q6jHsYBo-Z9hu0yofe2a_B621Nq-5f-Cf0AKoN2XQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context</title><source>SpringerLink Journals - AutoHoldings</source><creator>Smach, Fethi ; Lemaître, Cedric ; Gauthier, Jean-Paul ; Miteran, Johel ; Atri, Mohamed</creator><creatorcontrib>Smach, Fethi ; Lemaître, Cedric ; Gauthier, Jean-Paul ; Miteran, Johel ; Atri, Mohamed</creatorcontrib><description>This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts. Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost. The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-007-0036-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Engineering Sciences ; Image Processing and Computer Vision ; Mathematical Methods in Physics ; Signal and Image processing ; Signal,Image and Speech Processing</subject><ispartof>Journal of mathematical imaging and vision, 2008-01, Vol.30 (1), p.43-71</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-829462ecc45ed69734bd3d6d99be7294fbbfe2066b651de8e32e6f443f92a01d3</citedby><cites>FETCH-LOGICAL-c322t-829462ecc45ed69734bd3d6d99be7294fbbfe2066b651de8e32e6f443f92a01d3</cites><orcidid>0000-0002-5400-0431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-007-0036-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-007-0036-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00647554$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Smach, Fethi</creatorcontrib><creatorcontrib>Lemaître, Cedric</creatorcontrib><creatorcontrib>Gauthier, Jean-Paul</creatorcontrib><creatorcontrib>Miteran, Johel</creatorcontrib><creatorcontrib>Atri, Mohamed</creatorcontrib><title>Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts. Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost. The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical Methods in Physics</subject><subject>Signal and Image processing</subject><subject>Signal,Image and Speech Processing</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZRHwK068rAptkYoq8RI7K3EmrasQR7Z5fg3fwpeRqIgli9GM7tw70hyETik5p4RkF4GSPKVJP_bFZcL30IimGU8ymfN9NCKKiUQpkh2ioxC2hJCc0WyEnubQgi8a-wkVnrkXb8HjSwjG2y46H_CbjRs86brGmiJa1wYcHV6VWzAx4Fswbt3aQce2_f66e7zBU9dGeI_H6KAumgAnv32MHmZX99NFslzNr6eTZWI4YzHJmRKSgTEihUqqjIuy4pWslCoh63d1WdbAiJSlTGkFOXAGshaC14oVhFZ8jM52dzdFoztvnwv_oV1h9WKy1INGiBRZmopX2nvpzmu8C8FD_RegRA8Y9Q6jHsYBo-Z9hu0yofe2a_B621Nq-5f-Cf0AKoN2XQ</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Smach, Fethi</creator><creator>Lemaître, Cedric</creator><creator>Gauthier, Jean-Paul</creator><creator>Miteran, Johel</creator><creator>Atri, Mohamed</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5400-0431</orcidid></search><sort><creationdate>20080101</creationdate><title>Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context</title><author>Smach, Fethi ; Lemaître, Cedric ; Gauthier, Jean-Paul ; Miteran, Johel ; Atri, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-829462ecc45ed69734bd3d6d99be7294fbbfe2066b651de8e32e6f443f92a01d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical Methods in Physics</topic><topic>Signal and Image processing</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smach, Fethi</creatorcontrib><creatorcontrib>Lemaître, Cedric</creatorcontrib><creatorcontrib>Gauthier, Jean-Paul</creatorcontrib><creatorcontrib>Miteran, Johel</creatorcontrib><creatorcontrib>Atri, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smach, Fethi</au><au>Lemaître, Cedric</au><au>Gauthier, Jean-Paul</au><au>Miteran, Johel</au><au>Atri, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2008-01-01</date><risdate>2008</risdate><volume>30</volume><issue>1</issue><spage>43</spage><epage>71</epage><pages>43-71</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts. Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost. The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10851-007-0036-3</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-5400-0431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2008-01, Vol.30 (1), p.43-71
issn 0924-9907
1573-7683
language eng
recordid cdi_hal_primary_oai_HAL_hal_00647554v1
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Computer Science
Engineering Sciences
Image Processing and Computer Vision
Mathematical Methods in Physics
Signal and Image processing
Signal,Image and Speech Processing
title Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Fourier%20Descriptors%20with%20Applications%20to%20Objects%20Recognition%20in%C2%A0SVM%20Context&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Smach,%20Fethi&rft.date=2008-01-01&rft.volume=30&rft.issue=1&rft.spage=43&rft.epage=71&rft.pages=43-71&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-007-0036-3&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00647554v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true