Experimental Evidence of Phosphoenolpyruvate Resynthesis from Pyruvate in Illuminated Leaves
Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2011-09, Vol.157 (1), p.86-95 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 86 |
container_title | Plant physiology (Bethesda) |
container_volume | 157 |
creator | Tcherkez, Guillaume Mahé, Aline Boex-Fontvieille, Edouard Gout, Elisabeth Guérard, Florence Bligny, Richard |
description | Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is partly inhibited in the light. Pyruvate may serve as a carbon source for amino acid (e. g. alanine) or fatty acid synthesis, but pyruvate metabolism is not well documented, and neither is the possible resynthesis of phosphoeno/pyruvate (PEP). Here, we examined the capacity of pyruvate to convert back to PEP using and 2 H labeling in illuminated cocklebur (Xanthium strumarium) leaves. We show that the intramolecular labeling pattern in Glu, 2-oxoglutarate, and malate after ¹³ C-3-pyruvate feeding was consistent with ¹³ C redistribution from PEP via the PEPcarboxylase reaction. Furthermore, the deuterium loss in Glu after ² H 3 -¹³ C-3-pyruvate feeding suggests that conversion to PEP and back to pyruvate washed out ² H atoms to the solvent. Our results demonstrate that in cocklebur leaves, PEP resynthesis occurred as a flux from pyruvate, approximately 0.5 % o of the net CO₂ assimilation rate. This is likely to involve pyruvate inorganic phosphate dikinase and the fundamental importance of this flux for PEP and inorganic phosphate homeostasis is discussed. |
doi_str_mv | 10.1104/pp.111.180711 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00636472v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435490</jstor_id><sourcerecordid>41435490</sourcerecordid><originalsourceid>FETCH-LOGICAL-h335t-d939601f2517ed2bd33f735586fdd93546140ade57918d7c56e6dcd0077b5e23</originalsourceid><addsrcrecordid>eNpFkEFr20AQhZfSkLhJjj226FJCD05mtLva1dEYpwkYEoKPAbHWjpDCSqtqJRP_-26wnZ7ezLyPN8ww9h3hFhHEXd9HxVvUoBC_sBlKns5TKfRXNgOINWidX7BvIbwBAHIU5-wiRcUBczVjr6v3noampW40LlntGktdSYmvkufah7721HnX74dpZ0ZKXijsu7Gm0ISkGnybPJ-cpksenZvapoudTdZkdhSu2FllXKDro16yzf1qs3yYr5_-PC4X63nNuRznNud5BlilEhXZdGs5rxSXUmeVjZ4UGQowlqTKUVtVyowyW1oApbaSUn7Jfh9ia-OKPh5jhn3hTVM8LNbFxwwg45lQ6Q4je3Ng-8H_nSiMRduEkpwzHfkpFForJeNyiOTPIzltW7KfwaffReDXETChNK4aTFc24T8nJOeZ_lj548C9hdEPn75AEU_Lgf8DwraGxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>887757350</pqid></control><display><type>article</type><title>Experimental Evidence of Phosphoenolpyruvate Resynthesis from Pyruvate in Illuminated Leaves</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Tcherkez, Guillaume ; Mahé, Aline ; Boex-Fontvieille, Edouard ; Gout, Elisabeth ; Guérard, Florence ; Bligny, Richard</creator><creatorcontrib>Tcherkez, Guillaume ; Mahé, Aline ; Boex-Fontvieille, Edouard ; Gout, Elisabeth ; Guérard, Florence ; Bligny, Richard</creatorcontrib><description>Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is partly inhibited in the light. Pyruvate may serve as a carbon source for amino acid (e. g. alanine) or fatty acid synthesis, but pyruvate metabolism is not well documented, and neither is the possible resynthesis of phosphoeno/pyruvate (PEP). Here, we examined the capacity of pyruvate to convert back to PEP using and 2 H labeling in illuminated cocklebur (Xanthium strumarium) leaves. We show that the intramolecular labeling pattern in Glu, 2-oxoglutarate, and malate after ¹³ C-3-pyruvate feeding was consistent with ¹³ C redistribution from PEP via the PEPcarboxylase reaction. Furthermore, the deuterium loss in Glu after ² H 3 -¹³ C-3-pyruvate feeding suggests that conversion to PEP and back to pyruvate washed out ² H atoms to the solvent. Our results demonstrate that in cocklebur leaves, PEP resynthesis occurred as a flux from pyruvate, approximately 0.5 % o of the net CO₂ assimilation rate. This is likely to involve pyruvate inorganic phosphate dikinase and the fundamental importance of this flux for PEP and inorganic phosphate homeostasis is discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.180711</identifier><identifier>PMID: 21730197</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Atoms ; Biochemistry, Molecular Biology ; BIOENERGETICS AND PHOTOSYNTHESIS ; Biological and medical sciences ; Carbon Isotopes - metabolism ; Chloroplasts ; Dehydrogenases ; Deuterium ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Isotopic labeling ; Leaves ; Life Sciences ; Metabolism ; Phosphates ; Phosphoenolpyruvate - metabolism ; Plant Leaves - metabolism ; Plant physiology and development ; Plants ; Pyruvic Acid - metabolism</subject><ispartof>Plant physiology (Bethesda), 2011-09, Vol.157 (1), p.86-95</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3339-956X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435490$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435490$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24533681$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21730197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00636472$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tcherkez, Guillaume</creatorcontrib><creatorcontrib>Mahé, Aline</creatorcontrib><creatorcontrib>Boex-Fontvieille, Edouard</creatorcontrib><creatorcontrib>Gout, Elisabeth</creatorcontrib><creatorcontrib>Guérard, Florence</creatorcontrib><creatorcontrib>Bligny, Richard</creatorcontrib><title>Experimental Evidence of Phosphoenolpyruvate Resynthesis from Pyruvate in Illuminated Leaves</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is partly inhibited in the light. Pyruvate may serve as a carbon source for amino acid (e. g. alanine) or fatty acid synthesis, but pyruvate metabolism is not well documented, and neither is the possible resynthesis of phosphoeno/pyruvate (PEP). Here, we examined the capacity of pyruvate to convert back to PEP using and 2 H labeling in illuminated cocklebur (Xanthium strumarium) leaves. We show that the intramolecular labeling pattern in Glu, 2-oxoglutarate, and malate after ¹³ C-3-pyruvate feeding was consistent with ¹³ C redistribution from PEP via the PEPcarboxylase reaction. Furthermore, the deuterium loss in Glu after ² H 3 -¹³ C-3-pyruvate feeding suggests that conversion to PEP and back to pyruvate washed out ² H atoms to the solvent. Our results demonstrate that in cocklebur leaves, PEP resynthesis occurred as a flux from pyruvate, approximately 0.5 % o of the net CO₂ assimilation rate. This is likely to involve pyruvate inorganic phosphate dikinase and the fundamental importance of this flux for PEP and inorganic phosphate homeostasis is discussed.</description><subject>Atoms</subject><subject>Biochemistry, Molecular Biology</subject><subject>BIOENERGETICS AND PHOTOSYNTHESIS</subject><subject>Biological and medical sciences</subject><subject>Carbon Isotopes - metabolism</subject><subject>Chloroplasts</subject><subject>Dehydrogenases</subject><subject>Deuterium</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isotopic labeling</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Phosphates</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Pyruvic Acid - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEFr20AQhZfSkLhJjj226FJCD05mtLva1dEYpwkYEoKPAbHWjpDCSqtqJRP_-26wnZ7ezLyPN8ww9h3hFhHEXd9HxVvUoBC_sBlKns5TKfRXNgOINWidX7BvIbwBAHIU5-wiRcUBczVjr6v3noampW40LlntGktdSYmvkufah7721HnX74dpZ0ZKXijsu7Gm0ISkGnybPJ-cpksenZvapoudTdZkdhSu2FllXKDro16yzf1qs3yYr5_-PC4X63nNuRznNud5BlilEhXZdGs5rxSXUmeVjZ4UGQowlqTKUVtVyowyW1oApbaSUn7Jfh9ia-OKPh5jhn3hTVM8LNbFxwwg45lQ6Q4je3Ng-8H_nSiMRduEkpwzHfkpFForJeNyiOTPIzltW7KfwaffReDXETChNK4aTFc24T8nJOeZ_lj548C9hdEPn75AEU_Lgf8DwraGxw</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Tcherkez, Guillaume</creator><creator>Mahé, Aline</creator><creator>Boex-Fontvieille, Edouard</creator><creator>Gout, Elisabeth</creator><creator>Guérard, Florence</creator><creator>Bligny, Richard</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3339-956X</orcidid></search><sort><creationdate>20110901</creationdate><title>Experimental Evidence of Phosphoenolpyruvate Resynthesis from Pyruvate in Illuminated Leaves</title><author>Tcherkez, Guillaume ; Mahé, Aline ; Boex-Fontvieille, Edouard ; Gout, Elisabeth ; Guérard, Florence ; Bligny, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h335t-d939601f2517ed2bd33f735586fdd93546140ade57918d7c56e6dcd0077b5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atoms</topic><topic>Biochemistry, Molecular Biology</topic><topic>BIOENERGETICS AND PHOTOSYNTHESIS</topic><topic>Biological and medical sciences</topic><topic>Carbon Isotopes - metabolism</topic><topic>Chloroplasts</topic><topic>Dehydrogenases</topic><topic>Deuterium</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isotopic labeling</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Phosphates</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Pyruvic Acid - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tcherkez, Guillaume</creatorcontrib><creatorcontrib>Mahé, Aline</creatorcontrib><creatorcontrib>Boex-Fontvieille, Edouard</creatorcontrib><creatorcontrib>Gout, Elisabeth</creatorcontrib><creatorcontrib>Guérard, Florence</creatorcontrib><creatorcontrib>Bligny, Richard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tcherkez, Guillaume</au><au>Mahé, Aline</au><au>Boex-Fontvieille, Edouard</au><au>Gout, Elisabeth</au><au>Guérard, Florence</au><au>Bligny, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evidence of Phosphoenolpyruvate Resynthesis from Pyruvate in Illuminated Leaves</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>157</volume><issue>1</issue><spage>86</spage><epage>95</epage><pages>86-95</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is partly inhibited in the light. Pyruvate may serve as a carbon source for amino acid (e. g. alanine) or fatty acid synthesis, but pyruvate metabolism is not well documented, and neither is the possible resynthesis of phosphoeno/pyruvate (PEP). Here, we examined the capacity of pyruvate to convert back to PEP using and 2 H labeling in illuminated cocklebur (Xanthium strumarium) leaves. We show that the intramolecular labeling pattern in Glu, 2-oxoglutarate, and malate after ¹³ C-3-pyruvate feeding was consistent with ¹³ C redistribution from PEP via the PEPcarboxylase reaction. Furthermore, the deuterium loss in Glu after ² H 3 -¹³ C-3-pyruvate feeding suggests that conversion to PEP and back to pyruvate washed out ² H atoms to the solvent. Our results demonstrate that in cocklebur leaves, PEP resynthesis occurred as a flux from pyruvate, approximately 0.5 % o of the net CO₂ assimilation rate. This is likely to involve pyruvate inorganic phosphate dikinase and the fundamental importance of this flux for PEP and inorganic phosphate homeostasis is discussed.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21730197</pmid><doi>10.1104/pp.111.180711</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3339-956X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2011-09, Vol.157 (1), p.86-95 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00636472v1 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Atoms Biochemistry, Molecular Biology BIOENERGETICS AND PHOTOSYNTHESIS Biological and medical sciences Carbon Isotopes - metabolism Chloroplasts Dehydrogenases Deuterium Enzymes Fundamental and applied biological sciences. Psychology Isotopic labeling Leaves Life Sciences Metabolism Phosphates Phosphoenolpyruvate - metabolism Plant Leaves - metabolism Plant physiology and development Plants Pyruvic Acid - metabolism |
title | Experimental Evidence of Phosphoenolpyruvate Resynthesis from Pyruvate in Illuminated Leaves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evidence%20of%20Phosphoenolpyruvate%20Resynthesis%20from%20Pyruvate%20in%20Illuminated%20Leaves&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Tcherkez,%20Guillaume&rft.date=2011-09-01&rft.volume=157&rft.issue=1&rft.spage=86&rft.epage=95&rft.pages=86-95&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.180711&rft_dat=%3Cjstor_hal_p%3E41435490%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=887757350&rft_id=info:pmid/21730197&rft_jstor_id=41435490&rfr_iscdi=true |