The homotopy theory of dg-categories and derived Morita theory
The main purpose of this work is to study the homotopy theory of dg-categories up to quasi-equivalences. Our main result is a description of the mapping spaces between two dg-categories C and D in terms of the nerve of a certain category of (C,D)-bimodules. We also prove that the homotopy category H...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2007-03, Vol.167 (3), p.615-667 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 3 |
container_start_page | 615 |
container_title | Inventiones mathematicae |
container_volume | 167 |
creator | Toen, Bertrand |
description | The main purpose of this work is to study the homotopy theory of dg-categories up to quasi-equivalences. Our main result is a description of the mapping spaces between two dg-categories C and D in terms of the nerve of a certain category of (C,D)-bimodules. We also prove that the homotopy category Ho(dg-Cat) possesses internal Hom's relative to the (derived) tensor product of dg-categories. We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories C and D as the dg-category of (C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the classifying space of dg-categories (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent (resp. perfect) complexes on their product. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00222-006-0025-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00635938v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418695591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-df5d9229a22afdbc36c25c67df92e1e21305de7b51f9a78c612983e0e1131c433</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt_gLfFm4doZtL9yEUoxVqh4qWeQ5qP7pa2qcm2sP-9WbZ4GAbe_Hi8eYQ8AnsBxsrXyBgiUsaKNJjT7oqMYMKRAorymoySyKgQwG7JXYxbxtKxxBF5W9U2q_3et_7YZW1tfegy7zKzoVq1duNDY2OmDiYzNjRna7KvJLXqgt6TG6d20T5c9pj8zN9XswVdfn98zqZLqieQt9S43AhEoRCVM2vNC425LkrjBFqwCJzlxpbrHJxQZaWLlLrillkADnrC-Zg8D7612sljaPYqdNKrRi6mS9lr6XGeC16dIbFPA3sM_vdkYyu3_hQOKZ6sKuACi6qHYIB08DEG6_5dgcm-UTk02hvLvlHZ8T_vn2eZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881392681</pqid></control><display><type>article</type><title>The homotopy theory of dg-categories and derived Morita theory</title><source>Springer Nature - Complete Springer Journals</source><creator>Toen, Bertrand</creator><creatorcontrib>Toen, Bertrand</creatorcontrib><description>The main purpose of this work is to study the homotopy theory of dg-categories up to quasi-equivalences. Our main result is a description of the mapping spaces between two dg-categories C and D in terms of the nerve of a certain category of (C,D)-bimodules. We also prove that the homotopy category Ho(dg-Cat) possesses internal Hom's relative to the (derived) tensor product of dg-categories. We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories C and D as the dg-category of (C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the classifying space of dg-categories (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent (resp. perfect) complexes on their product. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-006-0025-y</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><ispartof>Inventiones mathematicae, 2007-03, Vol.167 (3), p.615-667</ispartof><rights>Springer-Verlag 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-df5d9229a22afdbc36c25c67df92e1e21305de7b51f9a78c612983e0e1131c433</citedby><cites>FETCH-LOGICAL-c415t-df5d9229a22afdbc36c25c67df92e1e21305de7b51f9a78c612983e0e1131c433</cites><orcidid>0000-0001-8587-5401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00635938$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Toen, Bertrand</creatorcontrib><title>The homotopy theory of dg-categories and derived Morita theory</title><title>Inventiones mathematicae</title><description>The main purpose of this work is to study the homotopy theory of dg-categories up to quasi-equivalences. Our main result is a description of the mapping spaces between two dg-categories C and D in terms of the nerve of a certain category of (C,D)-bimodules. We also prove that the homotopy category Ho(dg-Cat) possesses internal Hom's relative to the (derived) tensor product of dg-categories. We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories C and D as the dg-category of (C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the classifying space of dg-categories (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent (resp. perfect) complexes on their product. [PUBLICATION ABSTRACT]</description><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kM1LAzEQxYMoWKt_gLfFm4doZtL9yEUoxVqh4qWeQ5qP7pa2qcm2sP-9WbZ4GAbe_Hi8eYQ8AnsBxsrXyBgiUsaKNJjT7oqMYMKRAorymoySyKgQwG7JXYxbxtKxxBF5W9U2q_3et_7YZW1tfegy7zKzoVq1duNDY2OmDiYzNjRna7KvJLXqgt6TG6d20T5c9pj8zN9XswVdfn98zqZLqieQt9S43AhEoRCVM2vNC425LkrjBFqwCJzlxpbrHJxQZaWLlLrillkADnrC-Zg8D7612sljaPYqdNKrRi6mS9lr6XGeC16dIbFPA3sM_vdkYyu3_hQOKZ6sKuACi6qHYIB08DEG6_5dgcm-UTk02hvLvlHZ8T_vn2eZ</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Toen, Bertrand</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8587-5401</orcidid></search><sort><creationdate>20070301</creationdate><title>The homotopy theory of dg-categories and derived Morita theory</title><author>Toen, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-df5d9229a22afdbc36c25c67df92e1e21305de7b51f9a78c612983e0e1131c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toen, Bertrand</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toen, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The homotopy theory of dg-categories and derived Morita theory</atitle><jtitle>Inventiones mathematicae</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>167</volume><issue>3</issue><spage>615</spage><epage>667</epage><pages>615-667</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>The main purpose of this work is to study the homotopy theory of dg-categories up to quasi-equivalences. Our main result is a description of the mapping spaces between two dg-categories C and D in terms of the nerve of a certain category of (C,D)-bimodules. We also prove that the homotopy category Ho(dg-Cat) possesses internal Hom's relative to the (derived) tensor product of dg-categories. We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories C and D as the dg-category of (C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the classifying space of dg-categories (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent (resp. perfect) complexes on their product. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-006-0025-y</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-8587-5401</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2007-03, Vol.167 (3), p.615-667 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00635938v1 |
source | Springer Nature - Complete Springer Journals |
title | The homotopy theory of dg-categories and derived Morita theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20homotopy%20theory%20of%20dg-categories%20and%20derived%20Morita%20theory&rft.jtitle=Inventiones%20mathematicae&rft.au=Toen,%20Bertrand&rft.date=2007-03-01&rft.volume=167&rft.issue=3&rft.spage=615&rft.epage=667&rft.pages=615-667&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-006-0025-y&rft_dat=%3Cproquest_hal_p%3E2418695591%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881392681&rft_id=info:pmid/&rfr_iscdi=true |