Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys

► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2011-10, Vol.53 (10), p.3139-3149
Hauptverfasser: Marlaud, T., Malki, B., Henon, C., Deschamps, A., Baroux, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3149
container_issue 10
container_start_page 3139
container_title Corrosion science
container_volume 53
creator Marlaud, T.
Malki, B.
Henon, C.
Deschamps, A.
Baroux, B.
description ► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment. The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests.
doi_str_mv 10.1016/j.corsci.2011.05.057
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00632696v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X11002885</els_id><sourcerecordid>919908976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</originalsourceid><addsrcrecordid>eNp9kVFrFDEQx4MoeFa_gQ_7Ilpwz5nsJtm8CMehtnBSEAXxJWSzWZsjtzmT3Wrf_A79hn4Ss93Sx8IwGTK__8wwQ8hLhDUC8nf7tQkxGbemgLgGlk08IitshCyhlvwxWQEglLJqvj8lz1LaA0BmYUX8F-v16MKQLt2xaO3429qh0N6H68KEwzEkN2ffFgdnYkhjnMw4RVvooSvsnz54d6vObMzpOXJDsfH__t78GLL7_DO77bQUTM_Jk177ZF_cvSfk28cPX7dn5e7i0_l2sysNAxxLZpGZGigTtNHYdaxtsMW2rgRSykwlKWt6YShK06NthGhlVaHGBiStTd9UJ-R0qXupvTpGd9DxWgXt1Nlmp-Y_AF5RLvkVZvb1wh5j-DXZNKqDS8Z6rwcbpqQkSgmNFDyTbx4kkQusOafVPEC9oPPOUrT9_RQIaj6Z2qvlZGo-mQKWTWTZq7sOOhnt-6gH49K9ltY1Bc7mmd8vnM1LvHI2qlzJDsZ2Llozqi64hxv9B5yXsL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671466238</pqid></control><display><type>article</type><title>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Marlaud, T. ; Malki, B. ; Henon, C. ; Deschamps, A. ; Baroux, B.</creator><creatorcontrib>Marlaud, T. ; Malki, B. ; Henon, C. ; Deschamps, A. ; Baroux, B.</creatorcontrib><description>► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment. The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2011.05.057</identifier><identifier>CODEN: CRRSAA</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Aluminium ; ALUMINUM ALLOYS (50 TO 99 AL) ; Aluminum base alloys ; Applied sciences ; B. Galvanostatic ; C. Exfoliation corrosion ; Chemical Sciences ; CORROSION ; Corrosion environments ; Corrosion tests ; Damage ; Exact sciences and technology ; Exfoliation corrosion ; Fracture mechanics ; HEAT TREATING ; Heat treatment ; Material chemistry ; Metals. Metallurgy ; Microstructure ; MICROSTRUCTURES</subject><ispartof>Corrosion science, 2011-10, Vol.53 (10), p.3139-3149</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</citedby><cites>FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</cites><orcidid>0000-0002-6038-9201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X11002885$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24420651$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00632696$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marlaud, T.</creatorcontrib><creatorcontrib>Malki, B.</creatorcontrib><creatorcontrib>Henon, C.</creatorcontrib><creatorcontrib>Deschamps, A.</creatorcontrib><creatorcontrib>Baroux, B.</creatorcontrib><title>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</title><title>Corrosion science</title><description>► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment. The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests.</description><subject>A. Aluminium</subject><subject>ALUMINUM ALLOYS (50 TO 99 AL)</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>B. Galvanostatic</subject><subject>C. Exfoliation corrosion</subject><subject>Chemical Sciences</subject><subject>CORROSION</subject><subject>Corrosion environments</subject><subject>Corrosion tests</subject><subject>Damage</subject><subject>Exact sciences and technology</subject><subject>Exfoliation corrosion</subject><subject>Fracture mechanics</subject><subject>HEAT TREATING</subject><subject>Heat treatment</subject><subject>Material chemistry</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kVFrFDEQx4MoeFa_gQ_7Ilpwz5nsJtm8CMehtnBSEAXxJWSzWZsjtzmT3Wrf_A79hn4Ss93Sx8IwGTK__8wwQ8hLhDUC8nf7tQkxGbemgLgGlk08IitshCyhlvwxWQEglLJqvj8lz1LaA0BmYUX8F-v16MKQLt2xaO3429qh0N6H68KEwzEkN2ffFgdnYkhjnMw4RVvooSvsnz54d6vObMzpOXJDsfH__t78GLL7_DO77bQUTM_Jk177ZF_cvSfk28cPX7dn5e7i0_l2sysNAxxLZpGZGigTtNHYdaxtsMW2rgRSykwlKWt6YShK06NthGhlVaHGBiStTd9UJ-R0qXupvTpGd9DxWgXt1Nlmp-Y_AF5RLvkVZvb1wh5j-DXZNKqDS8Z6rwcbpqQkSgmNFDyTbx4kkQusOafVPEC9oPPOUrT9_RQIaj6Z2qvlZGo-mQKWTWTZq7sOOhnt-6gH49K9ltY1Bc7mmd8vnM1LvHI2qlzJDsZ2Llozqi64hxv9B5yXsL0</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Marlaud, T.</creator><creator>Malki, B.</creator><creator>Henon, C.</creator><creator>Deschamps, A.</creator><creator>Baroux, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid></search><sort><creationdate>20111001</creationdate><title>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</title><author>Marlaud, T. ; Malki, B. ; Henon, C. ; Deschamps, A. ; Baroux, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Aluminium</topic><topic>ALUMINUM ALLOYS (50 TO 99 AL)</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>B. Galvanostatic</topic><topic>C. Exfoliation corrosion</topic><topic>Chemical Sciences</topic><topic>CORROSION</topic><topic>Corrosion environments</topic><topic>Corrosion tests</topic><topic>Damage</topic><topic>Exact sciences and technology</topic><topic>Exfoliation corrosion</topic><topic>Fracture mechanics</topic><topic>HEAT TREATING</topic><topic>Heat treatment</topic><topic>Material chemistry</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marlaud, T.</creatorcontrib><creatorcontrib>Malki, B.</creatorcontrib><creatorcontrib>Henon, C.</creatorcontrib><creatorcontrib>Deschamps, A.</creatorcontrib><creatorcontrib>Baroux, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marlaud, T.</au><au>Malki, B.</au><au>Henon, C.</au><au>Deschamps, A.</au><au>Baroux, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</atitle><jtitle>Corrosion science</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>53</volume><issue>10</issue><spage>3139</spage><epage>3149</epage><pages>3139-3149</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><coden>CRRSAA</coden><abstract>► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment. The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2011.05.057</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2011-10, Vol.53 (10), p.3139-3149
issn 0010-938X
1879-0496
language eng
recordid cdi_hal_primary_oai_HAL_hal_00632696v1
source Elsevier ScienceDirect Journals
subjects A. Aluminium
ALUMINUM ALLOYS (50 TO 99 AL)
Aluminum base alloys
Applied sciences
B. Galvanostatic
C. Exfoliation corrosion
Chemical Sciences
CORROSION
Corrosion environments
Corrosion tests
Damage
Exact sciences and technology
Exfoliation corrosion
Fracture mechanics
HEAT TREATING
Heat treatment
Material chemistry
Metals. Metallurgy
Microstructure
MICROSTRUCTURES
title Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20alloy%20composition,%20microstructure%20and%20exfoliation%20corrosion%20in%20Al%E2%80%93Zn%E2%80%93Mg%E2%80%93Cu%20alloys&rft.jtitle=Corrosion%20science&rft.au=Marlaud,%20T.&rft.date=2011-10-01&rft.volume=53&rft.issue=10&rft.spage=3139&rft.epage=3149&rft.pages=3139-3149&rft.issn=0010-938X&rft.eissn=1879-0496&rft.coden=CRRSAA&rft_id=info:doi/10.1016/j.corsci.2011.05.057&rft_dat=%3Cproquest_hal_p%3E919908976%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671466238&rft_id=info:pmid/&rft_els_id=S0010938X11002885&rfr_iscdi=true