Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys
► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2011-10, Vol.53 (10), p.3139-3149 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3149 |
---|---|
container_issue | 10 |
container_start_page | 3139 |
container_title | Corrosion science |
container_volume | 53 |
creator | Marlaud, T. Malki, B. Henon, C. Deschamps, A. Baroux, B. |
description | ► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment.
The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests. |
doi_str_mv | 10.1016/j.corsci.2011.05.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00632696v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X11002885</els_id><sourcerecordid>919908976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</originalsourceid><addsrcrecordid>eNp9kVFrFDEQx4MoeFa_gQ_7Ilpwz5nsJtm8CMehtnBSEAXxJWSzWZsjtzmT3Wrf_A79hn4Ss93Sx8IwGTK__8wwQ8hLhDUC8nf7tQkxGbemgLgGlk08IitshCyhlvwxWQEglLJqvj8lz1LaA0BmYUX8F-v16MKQLt2xaO3429qh0N6H68KEwzEkN2ffFgdnYkhjnMw4RVvooSvsnz54d6vObMzpOXJDsfH__t78GLL7_DO77bQUTM_Jk177ZF_cvSfk28cPX7dn5e7i0_l2sysNAxxLZpGZGigTtNHYdaxtsMW2rgRSykwlKWt6YShK06NthGhlVaHGBiStTd9UJ-R0qXupvTpGd9DxWgXt1Nlmp-Y_AF5RLvkVZvb1wh5j-DXZNKqDS8Z6rwcbpqQkSgmNFDyTbx4kkQusOafVPEC9oPPOUrT9_RQIaj6Z2qvlZGo-mQKWTWTZq7sOOhnt-6gH49K9ltY1Bc7mmd8vnM1LvHI2qlzJDsZ2Llozqi64hxv9B5yXsL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671466238</pqid></control><display><type>article</type><title>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Marlaud, T. ; Malki, B. ; Henon, C. ; Deschamps, A. ; Baroux, B.</creator><creatorcontrib>Marlaud, T. ; Malki, B. ; Henon, C. ; Deschamps, A. ; Baroux, B.</creatorcontrib><description>► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment.
The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2011.05.057</identifier><identifier>CODEN: CRRSAA</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Aluminium ; ALUMINUM ALLOYS (50 TO 99 AL) ; Aluminum base alloys ; Applied sciences ; B. Galvanostatic ; C. Exfoliation corrosion ; Chemical Sciences ; CORROSION ; Corrosion environments ; Corrosion tests ; Damage ; Exact sciences and technology ; Exfoliation corrosion ; Fracture mechanics ; HEAT TREATING ; Heat treatment ; Material chemistry ; Metals. Metallurgy ; Microstructure ; MICROSTRUCTURES</subject><ispartof>Corrosion science, 2011-10, Vol.53 (10), p.3139-3149</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</citedby><cites>FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</cites><orcidid>0000-0002-6038-9201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X11002885$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24420651$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00632696$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marlaud, T.</creatorcontrib><creatorcontrib>Malki, B.</creatorcontrib><creatorcontrib>Henon, C.</creatorcontrib><creatorcontrib>Deschamps, A.</creatorcontrib><creatorcontrib>Baroux, B.</creatorcontrib><title>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</title><title>Corrosion science</title><description>► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment.
The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests.</description><subject>A. Aluminium</subject><subject>ALUMINUM ALLOYS (50 TO 99 AL)</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>B. Galvanostatic</subject><subject>C. Exfoliation corrosion</subject><subject>Chemical Sciences</subject><subject>CORROSION</subject><subject>Corrosion environments</subject><subject>Corrosion tests</subject><subject>Damage</subject><subject>Exact sciences and technology</subject><subject>Exfoliation corrosion</subject><subject>Fracture mechanics</subject><subject>HEAT TREATING</subject><subject>Heat treatment</subject><subject>Material chemistry</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kVFrFDEQx4MoeFa_gQ_7Ilpwz5nsJtm8CMehtnBSEAXxJWSzWZsjtzmT3Wrf_A79hn4Ss93Sx8IwGTK__8wwQ8hLhDUC8nf7tQkxGbemgLgGlk08IitshCyhlvwxWQEglLJqvj8lz1LaA0BmYUX8F-v16MKQLt2xaO3429qh0N6H68KEwzEkN2ffFgdnYkhjnMw4RVvooSvsnz54d6vObMzpOXJDsfH__t78GLL7_DO77bQUTM_Jk177ZF_cvSfk28cPX7dn5e7i0_l2sysNAxxLZpGZGigTtNHYdaxtsMW2rgRSykwlKWt6YShK06NthGhlVaHGBiStTd9UJ-R0qXupvTpGd9DxWgXt1Nlmp-Y_AF5RLvkVZvb1wh5j-DXZNKqDS8Z6rwcbpqQkSgmNFDyTbx4kkQusOafVPEC9oPPOUrT9_RQIaj6Z2qvlZGo-mQKWTWTZq7sOOhnt-6gH49K9ltY1Bc7mmd8vnM1LvHI2qlzJDsZ2Llozqi64hxv9B5yXsL0</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Marlaud, T.</creator><creator>Malki, B.</creator><creator>Henon, C.</creator><creator>Deschamps, A.</creator><creator>Baroux, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid></search><sort><creationdate>20111001</creationdate><title>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</title><author>Marlaud, T. ; Malki, B. ; Henon, C. ; Deschamps, A. ; Baroux, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-5e15c4025728a1dd5b81b1b4371225c39258f7c219cf1e877b9331a180924cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Aluminium</topic><topic>ALUMINUM ALLOYS (50 TO 99 AL)</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>B. Galvanostatic</topic><topic>C. Exfoliation corrosion</topic><topic>Chemical Sciences</topic><topic>CORROSION</topic><topic>Corrosion environments</topic><topic>Corrosion tests</topic><topic>Damage</topic><topic>Exact sciences and technology</topic><topic>Exfoliation corrosion</topic><topic>Fracture mechanics</topic><topic>HEAT TREATING</topic><topic>Heat treatment</topic><topic>Material chemistry</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marlaud, T.</creatorcontrib><creatorcontrib>Malki, B.</creatorcontrib><creatorcontrib>Henon, C.</creatorcontrib><creatorcontrib>Deschamps, A.</creatorcontrib><creatorcontrib>Baroux, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marlaud, T.</au><au>Malki, B.</au><au>Henon, C.</au><au>Deschamps, A.</au><au>Baroux, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys</atitle><jtitle>Corrosion science</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>53</volume><issue>10</issue><spage>3139</spage><epage>3149</epage><pages>3139-3149</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><coden>CRRSAA</coden><abstract>► We evaluate the exfoliation corrosion of 7000 series Al alloys with various microstructures. ► We use the EXCO test and an analysis of potential transients during galvanostatic testing. ► Based on microstructure and corrosion morphology, two exfoliation mechanisms are identified. ► It is shown how these two mechanisms depend on alloy content and heat treatment.
The exfoliation corrosion (EFC) susceptibility of several 7000 Aluminium alloys has been studied after a variety of heat treatments using two independent corrosion tests (standard EXCO test and an electrochemical test based on potential transients analysis), together with detailed microstructural examinations. It is proposed that depending on heat treatment EFC may occur via two different mechanisms: inter-granular dissolution induced damage (IDD) or inter-granular fracture induced damage (IFD). The coexistence of these two mechanisms, leading to EFC, and their relative predominance explain the influence of alloy composition and heat treatment on EFC susceptibility via the confrontation of the two corrosion tests.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2011.05.057</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2011-10, Vol.53 (10), p.3139-3149 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00632696v1 |
source | Elsevier ScienceDirect Journals |
subjects | A. Aluminium ALUMINUM ALLOYS (50 TO 99 AL) Aluminum base alloys Applied sciences B. Galvanostatic C. Exfoliation corrosion Chemical Sciences CORROSION Corrosion environments Corrosion tests Damage Exact sciences and technology Exfoliation corrosion Fracture mechanics HEAT TREATING Heat treatment Material chemistry Metals. Metallurgy Microstructure MICROSTRUCTURES |
title | Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20alloy%20composition,%20microstructure%20and%20exfoliation%20corrosion%20in%20Al%E2%80%93Zn%E2%80%93Mg%E2%80%93Cu%20alloys&rft.jtitle=Corrosion%20science&rft.au=Marlaud,%20T.&rft.date=2011-10-01&rft.volume=53&rft.issue=10&rft.spage=3139&rft.epage=3149&rft.pages=3139-3149&rft.issn=0010-938X&rft.eissn=1879-0496&rft.coden=CRRSAA&rft_id=info:doi/10.1016/j.corsci.2011.05.057&rft_dat=%3Cproquest_hal_p%3E919908976%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671466238&rft_id=info:pmid/&rft_els_id=S0010938X11002885&rfr_iscdi=true |