Accurate Junction Detection and Characterization in Natural Images
Accurate junction detection and characterization are of primary importance for several aspects of scene analysis, including depth recovery and motion analysis. In this work, we introduce a generic junction analysis scheme. The first asset of the proposed procedure is an automatic criterion for the d...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2014, Vol.106 (1), p.31-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | International journal of computer vision |
container_volume | 106 |
creator | Xia, Gui-Song Delon, Julie Gousseau, Yann |
description | Accurate junction detection and characterization are of primary importance for several aspects of scene analysis, including depth recovery and motion analysis. In this work, we introduce a generic junction analysis scheme. The first asset of the proposed procedure is an automatic criterion for the detection of junctions, permitting to deal with textured parts in which no detection is expected. Second, the method yields a characterization of L-, Y- and X- junctions, including a precise computation of their type, localization and scale. Contrary to classical approaches, scale characterization does not rely on the linear scale-space. First, an
a contrario
approach is used to compute the meaningfulness of a junction. This approach relies on a statistical modeling of suitably normalized gray level gradients. Then, exclusion principles between junctions permit their precise characterization. We give implementation details for this procedure and evaluate its efficiency through various experiments. |
doi_str_mv | 10.1007/s11263-013-0640-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00631609v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370999532</galeid><sourcerecordid>A370999532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-afc95bcdcaf617866d489ace6272bd754b6fab4ead109ca6db4d60655e7e44af3</originalsourceid><addsrcrecordid>eNp1kV2L1DAUhosoOK7-AO8KIuhF15O0SZrLcVbdkUHBj-twmp7OZumka5KK-uvN2GH9AAkh4eR5D-fNWxSPGZwzAPUiMsZlXQHLWzZQsTvFiglVV6wBcbdYgeZQCanZ_eJBjNcAwFter4qXa2vngInKt7O3yU2-vKBEyw19X26uMKBNFNwP_FV0vnyHKWvGcnvAPcWHxb0Bx0iPTudZ8fn1q0-by2r3_s12s95VVnCdKhysFp3tLQ6SqVbKvmk1WpJc8a5XounkgF1D2DPQFmXfNb0EKQQpahoc6rPi-dL3CkdzE9wBw3czoTOX65051gBkzSToryyzzxb2JkxfZorJHFy0NI7oaZqjYSKzUmhVZ_TJP-j1NAefnRjWKMmFqNs2U-cLtceRjPPDlPK35NXTwdnJ0-ByfV0r0FqLmv-e9iTITKJvaY9zjGb78cPfLFtYG6YYAw239hiYY7xmidfkeM0xXnN0-PQ0NkaL4xDQWxdvhbyVIHL_zPGFi_nJ7yn8Ye-_zX8CVLix0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476255388</pqid></control><display><type>article</type><title>Accurate Junction Detection and Characterization in Natural Images</title><source>SpringerNature Journals</source><creator>Xia, Gui-Song ; Delon, Julie ; Gousseau, Yann</creator><creatorcontrib>Xia, Gui-Song ; Delon, Julie ; Gousseau, Yann</creatorcontrib><description>Accurate junction detection and characterization are of primary importance for several aspects of scene analysis, including depth recovery and motion analysis. In this work, we introduce a generic junction analysis scheme. The first asset of the proposed procedure is an automatic criterion for the detection of junctions, permitting to deal with textured parts in which no detection is expected. Second, the method yields a characterization of L-, Y- and X- junctions, including a precise computation of their type, localization and scale. Contrary to classical approaches, scale characterization does not rely on the linear scale-space. First, an
a contrario
approach is used to compute the meaningfulness of a junction. This approach relies on a statistical modeling of suitably normalized gray level gradients. Then, exclusion principles between junctions permit their precise characterization. We give implementation details for this procedure and evaluate its efficiency through various experiments.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-013-0640-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Applied sciences ; Artificial Intelligence ; Computation ; Computer Imaging ; Computer Science ; Computer science; control theory; systems ; Computer Vision and Pattern Recognition ; Exact sciences and technology ; Image Processing and Computer Vision ; Image processing systems ; Localization ; Pattern Recognition ; Pattern Recognition and Graphics ; Pattern recognition. Digital image processing. Computational geometry ; Sensors ; Studies ; Vision ; Vision systems</subject><ispartof>International journal of computer vision, 2014, Vol.106 (1), p.31-56</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media New York 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-afc95bcdcaf617866d489ace6272bd754b6fab4ead109ca6db4d60655e7e44af3</citedby><cites>FETCH-LOGICAL-c529t-afc95bcdcaf617866d489ace6272bd754b6fab4ead109ca6db4d60655e7e44af3</cites><orcidid>0000-0002-7182-7537 ; 0000-0001-5249-0847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-013-0640-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-013-0640-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28605099$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00631609$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Gui-Song</creatorcontrib><creatorcontrib>Delon, Julie</creatorcontrib><creatorcontrib>Gousseau, Yann</creatorcontrib><title>Accurate Junction Detection and Characterization in Natural Images</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Accurate junction detection and characterization are of primary importance for several aspects of scene analysis, including depth recovery and motion analysis. In this work, we introduce a generic junction analysis scheme. The first asset of the proposed procedure is an automatic criterion for the detection of junctions, permitting to deal with textured parts in which no detection is expected. Second, the method yields a characterization of L-, Y- and X- junctions, including a precise computation of their type, localization and scale. Contrary to classical approaches, scale characterization does not rely on the linear scale-space. First, an
a contrario
approach is used to compute the meaningfulness of a junction. This approach relies on a statistical modeling of suitably normalized gray level gradients. Then, exclusion principles between junctions permit their precise characterization. We give implementation details for this procedure and evaluate its efficiency through various experiments.</description><subject>Analysis</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computation</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Image processing systems</subject><subject>Localization</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sensors</subject><subject>Studies</subject><subject>Vision</subject><subject>Vision systems</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV2L1DAUhosoOK7-AO8KIuhF15O0SZrLcVbdkUHBj-twmp7OZumka5KK-uvN2GH9AAkh4eR5D-fNWxSPGZwzAPUiMsZlXQHLWzZQsTvFiglVV6wBcbdYgeZQCanZ_eJBjNcAwFter4qXa2vngInKt7O3yU2-vKBEyw19X26uMKBNFNwP_FV0vnyHKWvGcnvAPcWHxb0Bx0iPTudZ8fn1q0-by2r3_s12s95VVnCdKhysFp3tLQ6SqVbKvmk1WpJc8a5XounkgF1D2DPQFmXfNb0EKQQpahoc6rPi-dL3CkdzE9wBw3czoTOX65051gBkzSToryyzzxb2JkxfZorJHFy0NI7oaZqjYSKzUmhVZ_TJP-j1NAefnRjWKMmFqNs2U-cLtceRjPPDlPK35NXTwdnJ0-ByfV0r0FqLmv-e9iTITKJvaY9zjGb78cPfLFtYG6YYAw239hiYY7xmidfkeM0xXnN0-PQ0NkaL4xDQWxdvhbyVIHL_zPGFi_nJ7yn8Ye-_zX8CVLix0g</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Xia, Gui-Song</creator><creator>Delon, Julie</creator><creator>Gousseau, Yann</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7182-7537</orcidid><orcidid>https://orcid.org/0000-0001-5249-0847</orcidid></search><sort><creationdate>2014</creationdate><title>Accurate Junction Detection and Characterization in Natural Images</title><author>Xia, Gui-Song ; Delon, Julie ; Gousseau, Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-afc95bcdcaf617866d489ace6272bd754b6fab4ead109ca6db4d60655e7e44af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computation</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Image processing systems</topic><topic>Localization</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sensors</topic><topic>Studies</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Gui-Song</creatorcontrib><creatorcontrib>Delon, Julie</creatorcontrib><creatorcontrib>Gousseau, Yann</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Gui-Song</au><au>Delon, Julie</au><au>Gousseau, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Junction Detection and Characterization in Natural Images</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2014</date><risdate>2014</risdate><volume>106</volume><issue>1</issue><spage>31</spage><epage>56</epage><pages>31-56</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Accurate junction detection and characterization are of primary importance for several aspects of scene analysis, including depth recovery and motion analysis. In this work, we introduce a generic junction analysis scheme. The first asset of the proposed procedure is an automatic criterion for the detection of junctions, permitting to deal with textured parts in which no detection is expected. Second, the method yields a characterization of L-, Y- and X- junctions, including a precise computation of their type, localization and scale. Contrary to classical approaches, scale characterization does not rely on the linear scale-space. First, an
a contrario
approach is used to compute the meaningfulness of a junction. This approach relies on a statistical modeling of suitably normalized gray level gradients. Then, exclusion principles between junctions permit their precise characterization. We give implementation details for this procedure and evaluate its efficiency through various experiments.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11263-013-0640-1</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-7182-7537</orcidid><orcidid>https://orcid.org/0000-0001-5249-0847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2014, Vol.106 (1), p.31-56 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00631609v1 |
source | SpringerNature Journals |
subjects | Analysis Applied sciences Artificial Intelligence Computation Computer Imaging Computer Science Computer science control theory systems Computer Vision and Pattern Recognition Exact sciences and technology Image Processing and Computer Vision Image processing systems Localization Pattern Recognition Pattern Recognition and Graphics Pattern recognition. Digital image processing. Computational geometry Sensors Studies Vision Vision systems |
title | Accurate Junction Detection and Characterization in Natural Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Junction%20Detection%20and%20Characterization%20in%20Natural%20Images&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Xia,%20Gui-Song&rft.date=2014&rft.volume=106&rft.issue=1&rft.spage=31&rft.epage=56&rft.pages=31-56&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-013-0640-1&rft_dat=%3Cgale_hal_p%3EA370999532%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1476255388&rft_id=info:pmid/&rft_galeid=A370999532&rfr_iscdi=true |