Monge extensions of cooperation and communication structures

Cooperation structures without any a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2010-10, Vol.206 (1), p.104-110
Hauptverfasser: Faigle, U., Grabisch, M., Heyne, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 104
container_title European journal of operational research
container_volume 206
creator Faigle, U.
Grabisch, M.
Heyne, M.
description Cooperation structures without any a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games.
doi_str_mv 10.1016/j.ejor.2010.01.043
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00625336v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710000779</els_id><sourcerecordid>2004689671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</originalsourceid><addsrcrecordid>eNp9UE2LFDEUDKLguPoHPA2CBw89vnxPw16WRV1xxIueQ0xeu2lmOm3SPbj_3tf2MkcD-XhFVVEpxl5z2HHg5n2_wz6XnQACgO9AySdsw_dWNGZv4CnbgLS2EYLb5-xFrT0AcM31hl1_zcMv3OKfCYea8lC3uduGnEcsfqJ564dI8-k0DymsSJ3KHKa5YH3JnnX-WPHV433Ffnz88P32rjl8-_T59ubQBC3V1LRB2oCtV7Izqo3aKIw26J8qhtb44Fuj4l7Q6FutIUa9t1p4pQJJvNVWXrF3q--9P7qxpJMvDy775O5uDm7BAIzQUpozJ-6blTuW_HvGOrk-z2WgeE6A4kpzBUQSKymUXGvB7uLKwS2Fut4thbqlUAfcUaEk-rKKCo4YLgqkRVSs7uykF2DofPj3IqmkkNJz2uNyg3Kc0PvpRG5vH3P6GvyxK34IqV5chTCiFbD8_XrlIRV8TlhcDQmHgDEVDJOLOf0v9F90u6QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204145140</pqid></control><display><type>article</type><title>Monge extensions of cooperation and communication structures</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Faigle, U. ; Grabisch, M. ; Heyne, M.</creator><creatorcontrib>Faigle, U. ; Grabisch, M. ; Heyne, M.</creatorcontrib><description>Cooperation structures without any a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.01.043</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>91A12 ; 91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set ; 91A40 ; Applied sciences ; Communication ; Communication structure ; Computer Science ; Convex game ; Cooperation ; Cooperation structure ; Discrete Mathematics ; Economics and Finance ; Exact sciences and technology ; Game theory ; Graph theory ; Humanities and Social Sciences ; Lovász extension ; Marginal value ; Monge extension ; Operational research and scientific management ; Operational research. Management science ; Operations Research ; Ranking ; Shapley value ; Studies ; Supermodularity ; Weber set</subject><ispartof>European journal of operational research, 2010-10, Vol.206 (1), p.104-110</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Oct 1, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</citedby><cites>FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</cites><orcidid>0000-0002-3283-1496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.01.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22629207$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a1_3ap_3a104-110.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00625336$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Faigle, U.</creatorcontrib><creatorcontrib>Grabisch, M.</creatorcontrib><creatorcontrib>Heyne, M.</creatorcontrib><title>Monge extensions of cooperation and communication structures</title><title>European journal of operational research</title><description>Cooperation structures without any a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games.</description><subject>91A12</subject><subject>91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set</subject><subject>91A40</subject><subject>Applied sciences</subject><subject>Communication</subject><subject>Communication structure</subject><subject>Computer Science</subject><subject>Convex game</subject><subject>Cooperation</subject><subject>Cooperation structure</subject><subject>Discrete Mathematics</subject><subject>Economics and Finance</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Graph theory</subject><subject>Humanities and Social Sciences</subject><subject>Lovász extension</subject><subject>Marginal value</subject><subject>Monge extension</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations Research</subject><subject>Ranking</subject><subject>Shapley value</subject><subject>Studies</subject><subject>Supermodularity</subject><subject>Weber set</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE2LFDEUDKLguPoHPA2CBw89vnxPw16WRV1xxIueQ0xeu2lmOm3SPbj_3tf2MkcD-XhFVVEpxl5z2HHg5n2_wz6XnQACgO9AySdsw_dWNGZv4CnbgLS2EYLb5-xFrT0AcM31hl1_zcMv3OKfCYea8lC3uduGnEcsfqJ564dI8-k0DymsSJ3KHKa5YH3JnnX-WPHV433Ffnz88P32rjl8-_T59ubQBC3V1LRB2oCtV7Izqo3aKIw26J8qhtb44Fuj4l7Q6FutIUa9t1p4pQJJvNVWXrF3q--9P7qxpJMvDy775O5uDm7BAIzQUpozJ-6blTuW_HvGOrk-z2WgeE6A4kpzBUQSKymUXGvB7uLKwS2Fut4thbqlUAfcUaEk-rKKCo4YLgqkRVSs7uykF2DofPj3IqmkkNJz2uNyg3Kc0PvpRG5vH3P6GvyxK34IqV5chTCiFbD8_XrlIRV8TlhcDQmHgDEVDJOLOf0v9F90u6QQ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Faigle, U.</creator><creator>Grabisch, M.</creator><creator>Heyne, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3283-1496</orcidid></search><sort><creationdate>20101001</creationdate><title>Monge extensions of cooperation and communication structures</title><author>Faigle, U. ; Grabisch, M. ; Heyne, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>91A12</topic><topic>91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set</topic><topic>91A40</topic><topic>Applied sciences</topic><topic>Communication</topic><topic>Communication structure</topic><topic>Computer Science</topic><topic>Convex game</topic><topic>Cooperation</topic><topic>Cooperation structure</topic><topic>Discrete Mathematics</topic><topic>Economics and Finance</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Graph theory</topic><topic>Humanities and Social Sciences</topic><topic>Lovász extension</topic><topic>Marginal value</topic><topic>Monge extension</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations Research</topic><topic>Ranking</topic><topic>Shapley value</topic><topic>Studies</topic><topic>Supermodularity</topic><topic>Weber set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faigle, U.</creatorcontrib><creatorcontrib>Grabisch, M.</creatorcontrib><creatorcontrib>Heyne, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faigle, U.</au><au>Grabisch, M.</au><au>Heyne, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monge extensions of cooperation and communication structures</atitle><jtitle>European journal of operational research</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>206</volume><issue>1</issue><spage>104</spage><epage>110</epage><pages>104-110</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Cooperation structures without any a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.01.043</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3283-1496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2010-10, Vol.206 (1), p.104-110
issn 0377-2217
1872-6860
language eng
recordid cdi_hal_primary_oai_HAL_hal_00625336v1
source RePEc; Elsevier ScienceDirect Journals Complete
subjects 91A12
91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set
91A40
Applied sciences
Communication
Communication structure
Computer Science
Convex game
Cooperation
Cooperation structure
Discrete Mathematics
Economics and Finance
Exact sciences and technology
Game theory
Graph theory
Humanities and Social Sciences
Lovász extension
Marginal value
Monge extension
Operational research and scientific management
Operational research. Management science
Operations Research
Ranking
Shapley value
Studies
Supermodularity
Weber set
title Monge extensions of cooperation and communication structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monge%20extensions%20of%20cooperation%20and%20communication%20structures&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Faigle,%20U.&rft.date=2010-10-01&rft.volume=206&rft.issue=1&rft.spage=104&rft.epage=110&rft.pages=104-110&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.01.043&rft_dat=%3Cproquest_hal_p%3E2004689671%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204145140&rft_id=info:pmid/&rft_els_id=S0377221710000779&rfr_iscdi=true