Monge extensions of cooperation and communication structures
Cooperation structures without any a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which i...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2010-10, Vol.206 (1), p.104-110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 104 |
container_title | European journal of operational research |
container_volume | 206 |
creator | Faigle, U. Grabisch, M. Heyne, M. |
description | Cooperation structures without any
a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games. |
doi_str_mv | 10.1016/j.ejor.2010.01.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00625336v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221710000779</els_id><sourcerecordid>2004689671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</originalsourceid><addsrcrecordid>eNp9UE2LFDEUDKLguPoHPA2CBw89vnxPw16WRV1xxIueQ0xeu2lmOm3SPbj_3tf2MkcD-XhFVVEpxl5z2HHg5n2_wz6XnQACgO9AySdsw_dWNGZv4CnbgLS2EYLb5-xFrT0AcM31hl1_zcMv3OKfCYea8lC3uduGnEcsfqJ564dI8-k0DymsSJ3KHKa5YH3JnnX-WPHV433Ffnz88P32rjl8-_T59ubQBC3V1LRB2oCtV7Izqo3aKIw26J8qhtb44Fuj4l7Q6FutIUa9t1p4pQJJvNVWXrF3q--9P7qxpJMvDy775O5uDm7BAIzQUpozJ-6blTuW_HvGOrk-z2WgeE6A4kpzBUQSKymUXGvB7uLKwS2Fut4thbqlUAfcUaEk-rKKCo4YLgqkRVSs7uykF2DofPj3IqmkkNJz2uNyg3Kc0PvpRG5vH3P6GvyxK34IqV5chTCiFbD8_XrlIRV8TlhcDQmHgDEVDJOLOf0v9F90u6QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204145140</pqid></control><display><type>article</type><title>Monge extensions of cooperation and communication structures</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Faigle, U. ; Grabisch, M. ; Heyne, M.</creator><creatorcontrib>Faigle, U. ; Grabisch, M. ; Heyne, M.</creatorcontrib><description>Cooperation structures without any
a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2010.01.043</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>91A12 ; 91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set ; 91A40 ; Applied sciences ; Communication ; Communication structure ; Computer Science ; Convex game ; Cooperation ; Cooperation structure ; Discrete Mathematics ; Economics and Finance ; Exact sciences and technology ; Game theory ; Graph theory ; Humanities and Social Sciences ; Lovász extension ; Marginal value ; Monge extension ; Operational research and scientific management ; Operational research. Management science ; Operations Research ; Ranking ; Shapley value ; Studies ; Supermodularity ; Weber set</subject><ispartof>European journal of operational research, 2010-10, Vol.206 (1), p.104-110</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Oct 1, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</citedby><cites>FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</cites><orcidid>0000-0002-3283-1496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2010.01.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22629207$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a1_3ap_3a104-110.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00625336$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Faigle, U.</creatorcontrib><creatorcontrib>Grabisch, M.</creatorcontrib><creatorcontrib>Heyne, M.</creatorcontrib><title>Monge extensions of cooperation and communication structures</title><title>European journal of operational research</title><description>Cooperation structures without any
a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games.</description><subject>91A12</subject><subject>91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set</subject><subject>91A40</subject><subject>Applied sciences</subject><subject>Communication</subject><subject>Communication structure</subject><subject>Computer Science</subject><subject>Convex game</subject><subject>Cooperation</subject><subject>Cooperation structure</subject><subject>Discrete Mathematics</subject><subject>Economics and Finance</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Graph theory</subject><subject>Humanities and Social Sciences</subject><subject>Lovász extension</subject><subject>Marginal value</subject><subject>Monge extension</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations Research</subject><subject>Ranking</subject><subject>Shapley value</subject><subject>Studies</subject><subject>Supermodularity</subject><subject>Weber set</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE2LFDEUDKLguPoHPA2CBw89vnxPw16WRV1xxIueQ0xeu2lmOm3SPbj_3tf2MkcD-XhFVVEpxl5z2HHg5n2_wz6XnQACgO9AySdsw_dWNGZv4CnbgLS2EYLb5-xFrT0AcM31hl1_zcMv3OKfCYea8lC3uduGnEcsfqJ564dI8-k0DymsSJ3KHKa5YH3JnnX-WPHV433Ffnz88P32rjl8-_T59ubQBC3V1LRB2oCtV7Izqo3aKIw26J8qhtb44Fuj4l7Q6FutIUa9t1p4pQJJvNVWXrF3q--9P7qxpJMvDy775O5uDm7BAIzQUpozJ-6blTuW_HvGOrk-z2WgeE6A4kpzBUQSKymUXGvB7uLKwS2Fut4thbqlUAfcUaEk-rKKCo4YLgqkRVSs7uykF2DofPj3IqmkkNJz2uNyg3Kc0PvpRG5vH3P6GvyxK34IqV5chTCiFbD8_XrlIRV8TlhcDQmHgDEVDJOLOf0v9F90u6QQ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Faigle, U.</creator><creator>Grabisch, M.</creator><creator>Heyne, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3283-1496</orcidid></search><sort><creationdate>20101001</creationdate><title>Monge extensions of cooperation and communication structures</title><author>Faigle, U. ; Grabisch, M. ; Heyne, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-9c37ce9a43f649d564ed7c5b4dc96aca964d82b4da9550dd58752a44c9a4a7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>91A12</topic><topic>91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set</topic><topic>91A40</topic><topic>Applied sciences</topic><topic>Communication</topic><topic>Communication structure</topic><topic>Computer Science</topic><topic>Convex game</topic><topic>Cooperation</topic><topic>Cooperation structure</topic><topic>Discrete Mathematics</topic><topic>Economics and Finance</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Graph theory</topic><topic>Humanities and Social Sciences</topic><topic>Lovász extension</topic><topic>Marginal value</topic><topic>Monge extension</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations Research</topic><topic>Ranking</topic><topic>Shapley value</topic><topic>Studies</topic><topic>Supermodularity</topic><topic>Weber set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faigle, U.</creatorcontrib><creatorcontrib>Grabisch, M.</creatorcontrib><creatorcontrib>Heyne, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faigle, U.</au><au>Grabisch, M.</au><au>Heyne, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monge extensions of cooperation and communication structures</atitle><jtitle>European journal of operational research</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>206</volume><issue>1</issue><spage>104</spage><epage>110</epage><pages>104-110</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Cooperation structures without any
a priori assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for marginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovász extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson’s graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley’s convexity model for classical cooperative games.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2010.01.043</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3283-1496</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2010-10, Vol.206 (1), p.104-110 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00625336v1 |
source | RePEc; Elsevier ScienceDirect Journals Complete |
subjects | 91A12 91A12 91A40 Communication structure Convex game Cooperation structure Monge extension Lovasz extension Marginal value Ranking Shapley value Supermodularity Weber set 91A40 Applied sciences Communication Communication structure Computer Science Convex game Cooperation Cooperation structure Discrete Mathematics Economics and Finance Exact sciences and technology Game theory Graph theory Humanities and Social Sciences Lovász extension Marginal value Monge extension Operational research and scientific management Operational research. Management science Operations Research Ranking Shapley value Studies Supermodularity Weber set |
title | Monge extensions of cooperation and communication structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monge%20extensions%20of%20cooperation%20and%20communication%20structures&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Faigle,%20U.&rft.date=2010-10-01&rft.volume=206&rft.issue=1&rft.spage=104&rft.epage=110&rft.pages=104-110&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2010.01.043&rft_dat=%3Cproquest_hal_p%3E2004689671%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204145140&rft_id=info:pmid/&rft_els_id=S0377221710000779&rfr_iscdi=true |