Delayed-Mode Calibration of Hydrographic Data Obtained from Animal-Borne Satellite Relay Data Loggers

A delayed-mode calibration procedure is presented to improve the quality of hydrographic data from CTD–Satellite Relay Data Loggers (CTD–SRDL) deployed on elephant seals. This procedure is applied on a dataset obtained with 10 CTD–SRDLs deployed at Kerguelen Islands in 2007. A comparison of CTD–SRDL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2011-06, Vol.28 (6), p.787-801
Hauptverfasser: Roquet, Fabien, Charrassin, Jean-Benoit, Marchand, Stephane, Boehme, Lars, Fedak, Mike, Reverdin, Gilles, Guinet, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 6
container_start_page 787
container_title Journal of atmospheric and oceanic technology
container_volume 28
creator Roquet, Fabien
Charrassin, Jean-Benoit
Marchand, Stephane
Boehme, Lars
Fedak, Mike
Reverdin, Gilles
Guinet, Christophe
description A delayed-mode calibration procedure is presented to improve the quality of hydrographic data from CTD–Satellite Relay Data Loggers (CTD–SRDL) deployed on elephant seals. This procedure is applied on a dataset obtained with 10 CTD–SRDLs deployed at Kerguelen Islands in 2007. A comparison of CTD–SRDLs with a ship-based CTD system is first presented. A pressure-effect correction, linear with pressure, is deduced for both temperature and salinity measurements. An external field effect on the conductivity sensor is also detected, inducing an additional salinity offset. The salinity offset cannot be estimated directly from the ship-based CTD comparisons, because the attachment of the CTD–SRDL on the seal head modifies the magnitude of the external field effect. Two methods are proposed for estimating a posteriori the salinity offset. The first method uses the stable salinity maximum characterizing the Lower Circumpolar Deep Water (LCDW), sampled by seals foraging south of the Southern Antarctic Circumpolar Current Front. Where this approach is not possible, a statistical method of cross-comparison of CTD–SRDLs surface salinity measurements is used over the sluggish Northern Kerguelen Plateau. Accuracies are respectively estimated as ±0.02°C for temperature and ±0.1 for derived salinity without corrections. The delayed-mode calibration significantly improves the CTD–SRDL data, improving accuracies to ±0.01°C and ±0.03, respectively. A better salinity accuracy of ±0.02 is achieved when the LCDW method can be used. For CTD–SRDLs where ship-based CTD comparisons are not available, the expected accuracy would be ±0.02°C for temperature and ±0.04 for the derived salinity.
doi_str_mv 10.1175/2010JTECHO801.1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00624609v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390427561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-9be1ab79de078684c6ac2dffecf6ad7d23b91dbced6f2882e24344e990e3d3523</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMoOI6u3QZduaje3KRJuxzHxygjAz7WIW1ux0ptxrQK8-_tMCK4cHXh8nHOB4exYwHnQpj0AkHA_fP1dLbIQJyLHTYSKUICCvUuG4GReQKpwX120HVvACCk0CNGV9S4NfnkIXjiU9fURXR9HVoeKj5b-xiW0a1e65Jfud7xRdG7uiXPqxje-aSt312TXIbYEn9yPTVN3RN_3ERu-XlYLil2h2yvck1HRz93zF5urp-ns2S-uL2bTuZJqTLZJ3lBwhUm9wQm05kqtSvRVxWVlXbeeJRFLnxRktcVZhkSKqkU5TmQ9DJFOWZn29xX19hVHOzi2gZX29lkbjc_AI1KQ_4lBvZky65i-Pikrrdv4TO2g57NjEqNQjQDdPofhBlqREgH8zG72FJlDF0XqfrtFmA349g_41ghvwFzu4DU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826220548</pqid></control><display><type>article</type><title>Delayed-Mode Calibration of Hydrographic Data Obtained from Animal-Borne Satellite Relay Data Loggers</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Roquet, Fabien ; Charrassin, Jean-Benoit ; Marchand, Stephane ; Boehme, Lars ; Fedak, Mike ; Reverdin, Gilles ; Guinet, Christophe</creator><creatorcontrib>Roquet, Fabien ; Charrassin, Jean-Benoit ; Marchand, Stephane ; Boehme, Lars ; Fedak, Mike ; Reverdin, Gilles ; Guinet, Christophe</creatorcontrib><description>A delayed-mode calibration procedure is presented to improve the quality of hydrographic data from CTD–Satellite Relay Data Loggers (CTD–SRDL) deployed on elephant seals. This procedure is applied on a dataset obtained with 10 CTD–SRDLs deployed at Kerguelen Islands in 2007. A comparison of CTD–SRDLs with a ship-based CTD system is first presented. A pressure-effect correction, linear with pressure, is deduced for both temperature and salinity measurements. An external field effect on the conductivity sensor is also detected, inducing an additional salinity offset. The salinity offset cannot be estimated directly from the ship-based CTD comparisons, because the attachment of the CTD–SRDL on the seal head modifies the magnitude of the external field effect. Two methods are proposed for estimating a posteriori the salinity offset. The first method uses the stable salinity maximum characterizing the Lower Circumpolar Deep Water (LCDW), sampled by seals foraging south of the Southern Antarctic Circumpolar Current Front. Where this approach is not possible, a statistical method of cross-comparison of CTD–SRDLs surface salinity measurements is used over the sluggish Northern Kerguelen Plateau. Accuracies are respectively estimated as ±0.02°C for temperature and ±0.1 for derived salinity without corrections. The delayed-mode calibration significantly improves the CTD–SRDL data, improving accuracies to ±0.01°C and ±0.03, respectively. A better salinity accuracy of ±0.02 is achieved when the LCDW method can be used. For CTD–SRDLs where ship-based CTD comparisons are not available, the expected accuracy would be ±0.02°C for temperature and ±0.04 for the derived salinity.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/2010JTECHO801.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Accuracy ; Antarctic Circumpolar Current ; Antarctic front ; Behavior ; Biologists ; Biology ; Calibration ; Conductivity sensors ; Continental interfaces, environment ; Corrections ; Data compression ; Data loggers ; Data processing ; Deep water ; Energy consumption ; Environmental Sciences ; Estimates ; External pressure ; Foraging behavior ; Hydrographic data ; Laboratories ; Marine mammals ; Pressure effects ; Procedures ; Relay ; Resistance thermometers ; Salinity ; Salinity effects ; Salinity measurements ; Satellites ; Sciences of the Universe ; Seals ; Sensors ; Software ; Standard deviation ; Statistical methods ; Surface salinity ; Temperature</subject><ispartof>Journal of atmospheric and oceanic technology, 2011-06, Vol.28 (6), p.787-801</ispartof><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Jun 2011</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-9be1ab79de078684c6ac2dffecf6ad7d23b91dbced6f2882e24344e990e3d3523</citedby><cites>FETCH-LOGICAL-c483t-9be1ab79de078684c6ac2dffecf6ad7d23b91dbced6f2882e24344e990e3d3523</cites><orcidid>0000-0003-1124-4564 ; 0000-0003-1679-6974 ; 0000-0003-2481-6947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00624609$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roquet, Fabien</creatorcontrib><creatorcontrib>Charrassin, Jean-Benoit</creatorcontrib><creatorcontrib>Marchand, Stephane</creatorcontrib><creatorcontrib>Boehme, Lars</creatorcontrib><creatorcontrib>Fedak, Mike</creatorcontrib><creatorcontrib>Reverdin, Gilles</creatorcontrib><creatorcontrib>Guinet, Christophe</creatorcontrib><title>Delayed-Mode Calibration of Hydrographic Data Obtained from Animal-Borne Satellite Relay Data Loggers</title><title>Journal of atmospheric and oceanic technology</title><description>A delayed-mode calibration procedure is presented to improve the quality of hydrographic data from CTD–Satellite Relay Data Loggers (CTD–SRDL) deployed on elephant seals. This procedure is applied on a dataset obtained with 10 CTD–SRDLs deployed at Kerguelen Islands in 2007. A comparison of CTD–SRDLs with a ship-based CTD system is first presented. A pressure-effect correction, linear with pressure, is deduced for both temperature and salinity measurements. An external field effect on the conductivity sensor is also detected, inducing an additional salinity offset. The salinity offset cannot be estimated directly from the ship-based CTD comparisons, because the attachment of the CTD–SRDL on the seal head modifies the magnitude of the external field effect. Two methods are proposed for estimating a posteriori the salinity offset. The first method uses the stable salinity maximum characterizing the Lower Circumpolar Deep Water (LCDW), sampled by seals foraging south of the Southern Antarctic Circumpolar Current Front. Where this approach is not possible, a statistical method of cross-comparison of CTD–SRDLs surface salinity measurements is used over the sluggish Northern Kerguelen Plateau. Accuracies are respectively estimated as ±0.02°C for temperature and ±0.1 for derived salinity without corrections. The delayed-mode calibration significantly improves the CTD–SRDL data, improving accuracies to ±0.01°C and ±0.03, respectively. A better salinity accuracy of ±0.02 is achieved when the LCDW method can be used. For CTD–SRDLs where ship-based CTD comparisons are not available, the expected accuracy would be ±0.02°C for temperature and ±0.04 for the derived salinity.</description><subject>Accuracy</subject><subject>Antarctic Circumpolar Current</subject><subject>Antarctic front</subject><subject>Behavior</subject><subject>Biologists</subject><subject>Biology</subject><subject>Calibration</subject><subject>Conductivity sensors</subject><subject>Continental interfaces, environment</subject><subject>Corrections</subject><subject>Data compression</subject><subject>Data loggers</subject><subject>Data processing</subject><subject>Deep water</subject><subject>Energy consumption</subject><subject>Environmental Sciences</subject><subject>Estimates</subject><subject>External pressure</subject><subject>Foraging behavior</subject><subject>Hydrographic data</subject><subject>Laboratories</subject><subject>Marine mammals</subject><subject>Pressure effects</subject><subject>Procedures</subject><subject>Relay</subject><subject>Resistance thermometers</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity measurements</subject><subject>Satellites</subject><subject>Sciences of the Universe</subject><subject>Seals</subject><subject>Sensors</subject><subject>Software</subject><subject>Standard deviation</subject><subject>Statistical methods</subject><subject>Surface salinity</subject><subject>Temperature</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtLxDAUhYMoOI6u3QZduaje3KRJuxzHxygjAz7WIW1ux0ptxrQK8-_tMCK4cHXh8nHOB4exYwHnQpj0AkHA_fP1dLbIQJyLHTYSKUICCvUuG4GReQKpwX120HVvACCk0CNGV9S4NfnkIXjiU9fURXR9HVoeKj5b-xiW0a1e65Jfud7xRdG7uiXPqxje-aSt312TXIbYEn9yPTVN3RN_3ERu-XlYLil2h2yvck1HRz93zF5urp-ns2S-uL2bTuZJqTLZJ3lBwhUm9wQm05kqtSvRVxWVlXbeeJRFLnxRktcVZhkSKqkU5TmQ9DJFOWZn29xX19hVHOzi2gZX29lkbjc_AI1KQ_4lBvZky65i-Pikrrdv4TO2g57NjEqNQjQDdPofhBlqREgH8zG72FJlDF0XqfrtFmA349g_41ghvwFzu4DU</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Roquet, Fabien</creator><creator>Charrassin, Jean-Benoit</creator><creator>Marchand, Stephane</creator><creator>Boehme, Lars</creator><creator>Fedak, Mike</creator><creator>Reverdin, Gilles</creator><creator>Guinet, Christophe</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1124-4564</orcidid><orcidid>https://orcid.org/0000-0003-1679-6974</orcidid><orcidid>https://orcid.org/0000-0003-2481-6947</orcidid></search><sort><creationdate>20110601</creationdate><title>Delayed-Mode Calibration of Hydrographic Data Obtained from Animal-Borne Satellite Relay Data Loggers</title><author>Roquet, Fabien ; Charrassin, Jean-Benoit ; Marchand, Stephane ; Boehme, Lars ; Fedak, Mike ; Reverdin, Gilles ; Guinet, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-9be1ab79de078684c6ac2dffecf6ad7d23b91dbced6f2882e24344e990e3d3523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Antarctic Circumpolar Current</topic><topic>Antarctic front</topic><topic>Behavior</topic><topic>Biologists</topic><topic>Biology</topic><topic>Calibration</topic><topic>Conductivity sensors</topic><topic>Continental interfaces, environment</topic><topic>Corrections</topic><topic>Data compression</topic><topic>Data loggers</topic><topic>Data processing</topic><topic>Deep water</topic><topic>Energy consumption</topic><topic>Environmental Sciences</topic><topic>Estimates</topic><topic>External pressure</topic><topic>Foraging behavior</topic><topic>Hydrographic data</topic><topic>Laboratories</topic><topic>Marine mammals</topic><topic>Pressure effects</topic><topic>Procedures</topic><topic>Relay</topic><topic>Resistance thermometers</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity measurements</topic><topic>Satellites</topic><topic>Sciences of the Universe</topic><topic>Seals</topic><topic>Sensors</topic><topic>Software</topic><topic>Standard deviation</topic><topic>Statistical methods</topic><topic>Surface salinity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roquet, Fabien</creatorcontrib><creatorcontrib>Charrassin, Jean-Benoit</creatorcontrib><creatorcontrib>Marchand, Stephane</creatorcontrib><creatorcontrib>Boehme, Lars</creatorcontrib><creatorcontrib>Fedak, Mike</creatorcontrib><creatorcontrib>Reverdin, Gilles</creatorcontrib><creatorcontrib>Guinet, Christophe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roquet, Fabien</au><au>Charrassin, Jean-Benoit</au><au>Marchand, Stephane</au><au>Boehme, Lars</au><au>Fedak, Mike</au><au>Reverdin, Gilles</au><au>Guinet, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delayed-Mode Calibration of Hydrographic Data Obtained from Animal-Borne Satellite Relay Data Loggers</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>28</volume><issue>6</issue><spage>787</spage><epage>801</epage><pages>787-801</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>A delayed-mode calibration procedure is presented to improve the quality of hydrographic data from CTD–Satellite Relay Data Loggers (CTD–SRDL) deployed on elephant seals. This procedure is applied on a dataset obtained with 10 CTD–SRDLs deployed at Kerguelen Islands in 2007. A comparison of CTD–SRDLs with a ship-based CTD system is first presented. A pressure-effect correction, linear with pressure, is deduced for both temperature and salinity measurements. An external field effect on the conductivity sensor is also detected, inducing an additional salinity offset. The salinity offset cannot be estimated directly from the ship-based CTD comparisons, because the attachment of the CTD–SRDL on the seal head modifies the magnitude of the external field effect. Two methods are proposed for estimating a posteriori the salinity offset. The first method uses the stable salinity maximum characterizing the Lower Circumpolar Deep Water (LCDW), sampled by seals foraging south of the Southern Antarctic Circumpolar Current Front. Where this approach is not possible, a statistical method of cross-comparison of CTD–SRDLs surface salinity measurements is used over the sluggish Northern Kerguelen Plateau. Accuracies are respectively estimated as ±0.02°C for temperature and ±0.1 for derived salinity without corrections. The delayed-mode calibration significantly improves the CTD–SRDL data, improving accuracies to ±0.01°C and ±0.03, respectively. A better salinity accuracy of ±0.02 is achieved when the LCDW method can be used. For CTD–SRDLs where ship-based CTD comparisons are not available, the expected accuracy would be ±0.02°C for temperature and ±0.04 for the derived salinity.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/2010JTECHO801.1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1124-4564</orcidid><orcidid>https://orcid.org/0000-0003-1679-6974</orcidid><orcidid>https://orcid.org/0000-0003-2481-6947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2011-06, Vol.28 (6), p.787-801
issn 0739-0572
1520-0426
language eng
recordid cdi_hal_primary_oai_HAL_hal_00624609v1
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accuracy
Antarctic Circumpolar Current
Antarctic front
Behavior
Biologists
Biology
Calibration
Conductivity sensors
Continental interfaces, environment
Corrections
Data compression
Data loggers
Data processing
Deep water
Energy consumption
Environmental Sciences
Estimates
External pressure
Foraging behavior
Hydrographic data
Laboratories
Marine mammals
Pressure effects
Procedures
Relay
Resistance thermometers
Salinity
Salinity effects
Salinity measurements
Satellites
Sciences of the Universe
Seals
Sensors
Software
Standard deviation
Statistical methods
Surface salinity
Temperature
title Delayed-Mode Calibration of Hydrographic Data Obtained from Animal-Borne Satellite Relay Data Loggers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delayed-Mode%20Calibration%20of%20Hydrographic%20Data%20Obtained%20from%20Animal-Borne%20Satellite%20Relay%20Data%20Loggers&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Roquet,%20Fabien&rft.date=2011-06-01&rft.volume=28&rft.issue=6&rft.spage=787&rft.epage=801&rft.pages=787-801&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/2010JTECHO801.1&rft_dat=%3Cproquest_hal_p%3E2390427561%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826220548&rft_id=info:pmid/&rfr_iscdi=true