Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations
We present mid-infrared ( 8 – 33 μ m ) observations of the binary L5-Trojan system (617) Patroclus–Menoetius before, during, and after two shadowing events, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we effectively observe changes in asteroid surf...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2010-02, Vol.205 (2), p.505-515 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 2 |
container_start_page | 505 |
container_title | Icarus (New York, N.Y. 1962) |
container_volume | 205 |
creator | Mueller, Michael Marchis, Franck Emery, Joshua P. Harris, Alan W. Mottola, Stefano Hestroffer, Daniel Berthier, Jérome di Martino, Mario |
description | We present mid-infrared
(
8
–
33
μ
m
)
observations of the binary L5-Trojan system (617) Patroclus–Menoetius before, during, and after two shadowing events, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we effectively observe changes in asteroid surface temperature in real time, allowing the thermal inertia to be determined very directly. A new detailed binary thermophysical model is presented which accounts for the system’s known mutual orbit, arbitrary component shapes, and thermal conduction in the presence of eclipses.
We obtain two local thermal-inertia values, representative of the respective shadowed areas:
21
±
14
J
s
-
1
/
2
K
-
1
m
-
2
and
6.4
±
1.6
J
s
-
1
/
2
K
-
1
m
-
2
. The average thermal inertia is estimated to be
20
±
15
J
s
-
1
/
2
K
-
1
m
-
2
, potentially with significant surface heterogeneity. This first thermal-inertia measurement for a Trojan asteroid indicates a surface covered in fine regolith. Independently, we establish the presence of fine-grained ( |
doi_str_mv | 10.1016/j.icarus.2009.07.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00618397v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103509003005</els_id><sourcerecordid>745632556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-e6f6982fd3f39f68c2e925e8c1933556ccd5f7ba30fe4a8e03b36d799aa07fbd3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVJodu0b9CDLqX0YHck2bLVQyAsaVNYaKGbsxjLo0aL19pI3oXk6evFIcfMZWD4Zn7mY-yTgFKA0N92ZXCYjrmUAKaEpoRKvWErAQYKqSt1wVYAwhQCVP2Ovc95BwB1a9SK3d24IRxyGP_xLoyYHvk2xR2OHPNEKYae_8EpRTcc83e-vae0x4GHkdIUkPsU9_zvIUxPlHjsMqUTTiGO-QN763HI9PG5X7K7Hzfb9W2x-f3z1_p6U7hKt1NB2mvTSt8rr4zXrZNkZE2tE0aputbO9bVvOlTgqcKWQHVK940xiND4rleX7Oty9x4He0hhPz9gIwZ7e72x5xmAFq0yzUnM7JeFPaT4cKQ82X3IjoYBR4rHbJuq1krOqTNZLaRLMedE_uW0AHsWbnd2EW7Pwi00dhY-r31-DsDscPAJRxfyy66UlZzrzF0tHM1mToGSzS7Q6KgPidxk-xheD_oP83eZIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745632556</pqid></control><display><type>article</type><title>Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mueller, Michael ; Marchis, Franck ; Emery, Joshua P. ; Harris, Alan W. ; Mottola, Stefano ; Hestroffer, Daniel ; Berthier, Jérome ; di Martino, Mario</creator><creatorcontrib>Mueller, Michael ; Marchis, Franck ; Emery, Joshua P. ; Harris, Alan W. ; Mottola, Stefano ; Hestroffer, Daniel ; Berthier, Jérome ; di Martino, Mario</creatorcontrib><description>We present mid-infrared
(
8
–
33
μ
m
)
observations of the binary L5-Trojan system (617) Patroclus–Menoetius before, during, and after two shadowing events, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we effectively observe changes in asteroid surface temperature in real time, allowing the thermal inertia to be determined very directly. A new detailed binary thermophysical model is presented which accounts for the system’s known mutual orbit, arbitrary component shapes, and thermal conduction in the presence of eclipses.
We obtain two local thermal-inertia values, representative of the respective shadowed areas:
21
±
14
J
s
-
1
/
2
K
-
1
m
-
2
and
6.4
±
1.6
J
s
-
1
/
2
K
-
1
m
-
2
. The average thermal inertia is estimated to be
20
±
15
J
s
-
1
/
2
K
-
1
m
-
2
, potentially with significant surface heterogeneity. This first thermal-inertia measurement for a Trojan asteroid indicates a surface covered in fine regolith. Independently, we establish the presence of fine-grained (<a few
μ
m
) silicates on the surface, based on emissivity features near 10 and
20
μ
m
similar to those previously found on other Trojans.
We also report
V-band observations and report a lightcurve with complete rotational coverage. The lightcurve has a low amplitude of
0.070
±
0.005
mag
peak-to-peak, implying a roughly spherical shape for both components, and is single-periodic with a period
(
103.02
±
0.40
h
)
equal to the period of the mutual orbit, indicating that the system is fully synchronized.
The diameters of Patroclus and Menoetius are
106
±
11
and
98
±
10
km
, respectively, in agreement with previous findings. Taken together with the system’s known total mass, this implies a bulk mass density of
1.08
±
0.33
g
cm
-
3
, significantly below the mass density of L4-Trojan asteroid (624) Hektor and suggesting a bulk composition dominated by water ice.
All known physical properties of Patroclus, arguably the best studied Trojan asteroid, are consistent with those expected in icy objects with devolatilized surface (extinct comets), consistent with what might be implied by recent dynamical modeling in the framework of the Nice Model.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2009.07.043</identifier><identifier>CODEN: ICRSA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Asteroids ; Astronomy ; Astrophysics ; composition ; Earth and Planetary Astrophysics ; Earth, ocean, space ; Eclipses ; Exact sciences and technology ; Infrared observations ; Physics ; Sciences of the Universe ; Solar system ; surfaces ; Trojan asteroids</subject><ispartof>Icarus (New York, N.Y. 1962), 2010-02, Vol.205 (2), p.505-515</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-e6f6982fd3f39f68c2e925e8c1933556ccd5f7ba30fe4a8e03b36d799aa07fbd3</citedby><cites>FETCH-LOGICAL-c468t-e6f6982fd3f39f68c2e925e8c1933556ccd5f7ba30fe4a8e03b36d799aa07fbd3</cites><orcidid>0000-0001-7016-7277 ; 0000-0003-1846-6485 ; 0000-0003-0472-9459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019103509003005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22422223$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00618397$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mueller, Michael</creatorcontrib><creatorcontrib>Marchis, Franck</creatorcontrib><creatorcontrib>Emery, Joshua P.</creatorcontrib><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Mottola, Stefano</creatorcontrib><creatorcontrib>Hestroffer, Daniel</creatorcontrib><creatorcontrib>Berthier, Jérome</creatorcontrib><creatorcontrib>di Martino, Mario</creatorcontrib><title>Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations</title><title>Icarus (New York, N.Y. 1962)</title><description>We present mid-infrared
(
8
–
33
μ
m
)
observations of the binary L5-Trojan system (617) Patroclus–Menoetius before, during, and after two shadowing events, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we effectively observe changes in asteroid surface temperature in real time, allowing the thermal inertia to be determined very directly. A new detailed binary thermophysical model is presented which accounts for the system’s known mutual orbit, arbitrary component shapes, and thermal conduction in the presence of eclipses.
We obtain two local thermal-inertia values, representative of the respective shadowed areas:
21
±
14
J
s
-
1
/
2
K
-
1
m
-
2
and
6.4
±
1.6
J
s
-
1
/
2
K
-
1
m
-
2
. The average thermal inertia is estimated to be
20
±
15
J
s
-
1
/
2
K
-
1
m
-
2
, potentially with significant surface heterogeneity. This first thermal-inertia measurement for a Trojan asteroid indicates a surface covered in fine regolith. Independently, we establish the presence of fine-grained (<a few
μ
m
) silicates on the surface, based on emissivity features near 10 and
20
μ
m
similar to those previously found on other Trojans.
We also report
V-band observations and report a lightcurve with complete rotational coverage. The lightcurve has a low amplitude of
0.070
±
0.005
mag
peak-to-peak, implying a roughly spherical shape for both components, and is single-periodic with a period
(
103.02
±
0.40
h
)
equal to the period of the mutual orbit, indicating that the system is fully synchronized.
The diameters of Patroclus and Menoetius are
106
±
11
and
98
±
10
km
, respectively, in agreement with previous findings. Taken together with the system’s known total mass, this implies a bulk mass density of
1.08
±
0.33
g
cm
-
3
, significantly below the mass density of L4-Trojan asteroid (624) Hektor and suggesting a bulk composition dominated by water ice.
All known physical properties of Patroclus, arguably the best studied Trojan asteroid, are consistent with those expected in icy objects with devolatilized surface (extinct comets), consistent with what might be implied by recent dynamical modeling in the framework of the Nice Model.</description><subject>Asteroids</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>composition</subject><subject>Earth and Planetary Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Eclipses</subject><subject>Exact sciences and technology</subject><subject>Infrared observations</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Solar system</subject><subject>surfaces</subject><subject>Trojan asteroids</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVJodu0b9CDLqX0YHck2bLVQyAsaVNYaKGbsxjLo0aL19pI3oXk6evFIcfMZWD4Zn7mY-yTgFKA0N92ZXCYjrmUAKaEpoRKvWErAQYKqSt1wVYAwhQCVP2Ovc95BwB1a9SK3d24IRxyGP_xLoyYHvk2xR2OHPNEKYae_8EpRTcc83e-vae0x4GHkdIUkPsU9_zvIUxPlHjsMqUTTiGO-QN763HI9PG5X7K7Hzfb9W2x-f3z1_p6U7hKt1NB2mvTSt8rr4zXrZNkZE2tE0aputbO9bVvOlTgqcKWQHVK940xiND4rleX7Oty9x4He0hhPz9gIwZ7e72x5xmAFq0yzUnM7JeFPaT4cKQ82X3IjoYBR4rHbJuq1krOqTNZLaRLMedE_uW0AHsWbnd2EW7Pwi00dhY-r31-DsDscPAJRxfyy66UlZzrzF0tHM1mToGSzS7Q6KgPidxk-xheD_oP83eZIg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Mueller, Michael</creator><creator>Marchis, Franck</creator><creator>Emery, Joshua P.</creator><creator>Harris, Alan W.</creator><creator>Mottola, Stefano</creator><creator>Hestroffer, Daniel</creator><creator>Berthier, Jérome</creator><creator>di Martino, Mario</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7016-7277</orcidid><orcidid>https://orcid.org/0000-0003-1846-6485</orcidid><orcidid>https://orcid.org/0000-0003-0472-9459</orcidid></search><sort><creationdate>20100201</creationdate><title>Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations</title><author>Mueller, Michael ; Marchis, Franck ; Emery, Joshua P. ; Harris, Alan W. ; Mottola, Stefano ; Hestroffer, Daniel ; Berthier, Jérome ; di Martino, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-e6f6982fd3f39f68c2e925e8c1933556ccd5f7ba30fe4a8e03b36d799aa07fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asteroids</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>composition</topic><topic>Earth and Planetary Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Eclipses</topic><topic>Exact sciences and technology</topic><topic>Infrared observations</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Solar system</topic><topic>surfaces</topic><topic>Trojan asteroids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, Michael</creatorcontrib><creatorcontrib>Marchis, Franck</creatorcontrib><creatorcontrib>Emery, Joshua P.</creatorcontrib><creatorcontrib>Harris, Alan W.</creatorcontrib><creatorcontrib>Mottola, Stefano</creatorcontrib><creatorcontrib>Hestroffer, Daniel</creatorcontrib><creatorcontrib>Berthier, Jérome</creatorcontrib><creatorcontrib>di Martino, Mario</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, Michael</au><au>Marchis, Franck</au><au>Emery, Joshua P.</au><au>Harris, Alan W.</au><au>Mottola, Stefano</au><au>Hestroffer, Daniel</au><au>Berthier, Jérome</au><au>di Martino, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>205</volume><issue>2</issue><spage>505</spage><epage>515</epage><pages>505-515</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><coden>ICRSA5</coden><abstract>We present mid-infrared
(
8
–
33
μ
m
)
observations of the binary L5-Trojan system (617) Patroclus–Menoetius before, during, and after two shadowing events, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. For the first time, we effectively observe changes in asteroid surface temperature in real time, allowing the thermal inertia to be determined very directly. A new detailed binary thermophysical model is presented which accounts for the system’s known mutual orbit, arbitrary component shapes, and thermal conduction in the presence of eclipses.
We obtain two local thermal-inertia values, representative of the respective shadowed areas:
21
±
14
J
s
-
1
/
2
K
-
1
m
-
2
and
6.4
±
1.6
J
s
-
1
/
2
K
-
1
m
-
2
. The average thermal inertia is estimated to be
20
±
15
J
s
-
1
/
2
K
-
1
m
-
2
, potentially with significant surface heterogeneity. This first thermal-inertia measurement for a Trojan asteroid indicates a surface covered in fine regolith. Independently, we establish the presence of fine-grained (<a few
μ
m
) silicates on the surface, based on emissivity features near 10 and
20
μ
m
similar to those previously found on other Trojans.
We also report
V-band observations and report a lightcurve with complete rotational coverage. The lightcurve has a low amplitude of
0.070
±
0.005
mag
peak-to-peak, implying a roughly spherical shape for both components, and is single-periodic with a period
(
103.02
±
0.40
h
)
equal to the period of the mutual orbit, indicating that the system is fully synchronized.
The diameters of Patroclus and Menoetius are
106
±
11
and
98
±
10
km
, respectively, in agreement with previous findings. Taken together with the system’s known total mass, this implies a bulk mass density of
1.08
±
0.33
g
cm
-
3
, significantly below the mass density of L4-Trojan asteroid (624) Hektor and suggesting a bulk composition dominated by water ice.
All known physical properties of Patroclus, arguably the best studied Trojan asteroid, are consistent with those expected in icy objects with devolatilized surface (extinct comets), consistent with what might be implied by recent dynamical modeling in the framework of the Nice Model.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2009.07.043</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7016-7277</orcidid><orcidid>https://orcid.org/0000-0003-1846-6485</orcidid><orcidid>https://orcid.org/0000-0003-0472-9459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-1035 |
ispartof | Icarus (New York, N.Y. 1962), 2010-02, Vol.205 (2), p.505-515 |
issn | 0019-1035 1090-2643 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00618397v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Asteroids Astronomy Astrophysics composition Earth and Planetary Astrophysics Earth, ocean, space Eclipses Exact sciences and technology Infrared observations Physics Sciences of the Universe Solar system surfaces Trojan asteroids |
title | Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eclipsing%20binary%20Trojan%20asteroid%20Patroclus:%20Thermal%20inertia%20from%20Spitzer%20observations&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Mueller,%20Michael&rft.date=2010-02-01&rft.volume=205&rft.issue=2&rft.spage=505&rft.epage=515&rft.pages=505-515&rft.issn=0019-1035&rft.eissn=1090-2643&rft.coden=ICRSA5&rft_id=info:doi/10.1016/j.icarus.2009.07.043&rft_dat=%3Cproquest_hal_p%3E745632556%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745632556&rft_id=info:pmid/&rft_els_id=S0019103509003005&rfr_iscdi=true |