2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming

The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2011-07, Vol.25 (7), p.2833-2840
Hauptverfasser: Lebouvier, Alexandre, Cauneau, François, Fulcheri, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2840
container_issue 7
container_start_page 2833
container_title Energy & fuels
container_volume 25
creator Lebouvier, Alexandre
Cauneau, François
Fulcheri, Laurent
description The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions.
doi_str_mv 10.1021/ef200471r
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00613703v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1238121813</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</originalsourceid><addsrcrecordid>eNqNkU1uFDEQhS1EJIaEBTfwBgkWDf7pbncvRzMkQQw_QmFt1bjLjCO7PdjdKLOLlCNwQ06Co0Fhw4JNVan0vdJTPUKec_aaM8HfoBWM1YqnR2TBG8Gqhon-MVmwrlMVa0X9hDzN-Zox1squWZA7sabLG5cPIeCUnKGrOO89DqWH_TzB5OIInp772Q10fRghOJN_3f5870acykg_xAG9G7_RaCnQj3GcdphCkSyToZ895AD0KiazozYmunaYsZybS_mCZROK9IycWPAZn_3pp-Tr-dur1WW1-XTxbrXcVCD7eqqarh5AmXbLuFV9r4zidhCtFF0NfdeisnUrDTS23doBZWOUYYDbbc17sLWx8pS8Ot7dgdf75AKkg47g9OVyo-935SlcKiZ_8MK-PLL7FL_PmCcdXDboPYwY56y5kB0XvBPiv1Eu_zowKeac0D7Y4Ezf56cf8ivsiyMLJuvrOKeSQ_4H9xtY-ZpX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238121813</pqid></control><display><type>article</type><title>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</title><source>American Chemical Society Journals</source><creator>Lebouvier, Alexandre ; Cauneau, François ; Fulcheri, Laurent</creator><creatorcontrib>Lebouvier, Alexandre ; Cauneau, François ; Fulcheri, Laurent</creatorcontrib><description>The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef200471r</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Atmospheric pollution by diesel engines ; Atmospheric pollution models ; Catalysis and Kinetics ; Diesel engines ; domain_spi.energ ; Engineering Sciences ; Exhaust emissions ; feeding ; Fuels ; Kinetics ; Oxygen ; regeneration ; Temperature</subject><ispartof>Energy &amp; fuels, 2011-07, Vol.25 (7), p.2833-2840</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</citedby><cites>FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</cites><orcidid>0000-0002-3843-431X ; 0000-0002-5646-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ef200471r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ef200471r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00613703$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebouvier, Alexandre</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><title>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions.</description><subject>Atmospheric pollution by diesel engines</subject><subject>Atmospheric pollution models</subject><subject>Catalysis and Kinetics</subject><subject>Diesel engines</subject><subject>domain_spi.energ</subject><subject>Engineering Sciences</subject><subject>Exhaust emissions</subject><subject>feeding</subject><subject>Fuels</subject><subject>Kinetics</subject><subject>Oxygen</subject><subject>regeneration</subject><subject>Temperature</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1uFDEQhS1EJIaEBTfwBgkWDf7pbncvRzMkQQw_QmFt1bjLjCO7PdjdKLOLlCNwQ06Co0Fhw4JNVan0vdJTPUKec_aaM8HfoBWM1YqnR2TBG8Gqhon-MVmwrlMVa0X9hDzN-Zox1squWZA7sabLG5cPIeCUnKGrOO89DqWH_TzB5OIInp772Q10fRghOJN_3f5870acykg_xAG9G7_RaCnQj3GcdphCkSyToZ895AD0KiazozYmunaYsZybS_mCZROK9IycWPAZn_3pp-Tr-dur1WW1-XTxbrXcVCD7eqqarh5AmXbLuFV9r4zidhCtFF0NfdeisnUrDTS23doBZWOUYYDbbc17sLWx8pS8Ot7dgdf75AKkg47g9OVyo-935SlcKiZ_8MK-PLL7FL_PmCcdXDboPYwY56y5kB0XvBPiv1Eu_zowKeac0D7Y4Ezf56cf8ivsiyMLJuvrOKeSQ_4H9xtY-ZpX</recordid><startdate>20110721</startdate><enddate>20110721</enddate><creator>Lebouvier, Alexandre</creator><creator>Cauneau, François</creator><creator>Fulcheri, Laurent</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid></search><sort><creationdate>20110721</creationdate><title>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</title><author>Lebouvier, Alexandre ; Cauneau, François ; Fulcheri, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric pollution by diesel engines</topic><topic>Atmospheric pollution models</topic><topic>Catalysis and Kinetics</topic><topic>Diesel engines</topic><topic>domain_spi.energ</topic><topic>Engineering Sciences</topic><topic>Exhaust emissions</topic><topic>feeding</topic><topic>Fuels</topic><topic>Kinetics</topic><topic>Oxygen</topic><topic>regeneration</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebouvier, Alexandre</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebouvier, Alexandre</au><au>Cauneau, François</au><au>Fulcheri, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2011-07-21</date><risdate>2011</risdate><volume>25</volume><issue>7</issue><spage>2833</spage><epage>2840</epage><pages>2833-2840</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions.</abstract><pub>American Chemical Society</pub><doi>10.1021/ef200471r</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2011-07, Vol.25 (7), p.2833-2840
issn 0887-0624
1520-5029
language eng
recordid cdi_hal_primary_oai_HAL_hal_00613703v1
source American Chemical Society Journals
subjects Atmospheric pollution by diesel engines
Atmospheric pollution models
Catalysis and Kinetics
Diesel engines
domain_spi.energ
Engineering Sciences
Exhaust emissions
feeding
Fuels
Kinetics
Oxygen
regeneration
Temperature
title 2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20Axisymmetric%20Coupled%20Computational%20Fluid%20Dynamics%E2%80%93Kinetics%20Modeling%20of%20a%20Nonthermal%20Arc%20Plasma%20Torch%20for%20Diesel%20Fuel%20Reforming&rft.jtitle=Energy%20&%20fuels&rft.au=Lebouvier,%20Alexandre&rft.date=2011-07-21&rft.volume=25&rft.issue=7&rft.spage=2833&rft.epage=2840&rft.pages=2833-2840&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/ef200471r&rft_dat=%3Cproquest_hal_p%3E1238121813%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238121813&rft_id=info:pmid/&rfr_iscdi=true