2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming
The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2011-07, Vol.25 (7), p.2833-2840 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2840 |
---|---|
container_issue | 7 |
container_start_page | 2833 |
container_title | Energy & fuels |
container_volume | 25 |
creator | Lebouvier, Alexandre Cauneau, François Fulcheri, Laurent |
description | The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions. |
doi_str_mv | 10.1021/ef200471r |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00613703v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1238121813</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</originalsourceid><addsrcrecordid>eNqNkU1uFDEQhS1EJIaEBTfwBgkWDf7pbncvRzMkQQw_QmFt1bjLjCO7PdjdKLOLlCNwQ06Co0Fhw4JNVan0vdJTPUKec_aaM8HfoBWM1YqnR2TBG8Gqhon-MVmwrlMVa0X9hDzN-Zox1squWZA7sabLG5cPIeCUnKGrOO89DqWH_TzB5OIInp772Q10fRghOJN_3f5870acykg_xAG9G7_RaCnQj3GcdphCkSyToZ895AD0KiazozYmunaYsZybS_mCZROK9IycWPAZn_3pp-Tr-dur1WW1-XTxbrXcVCD7eqqarh5AmXbLuFV9r4zidhCtFF0NfdeisnUrDTS23doBZWOUYYDbbc17sLWx8pS8Ot7dgdf75AKkg47g9OVyo-935SlcKiZ_8MK-PLL7FL_PmCcdXDboPYwY56y5kB0XvBPiv1Eu_zowKeac0D7Y4Ezf56cf8ivsiyMLJuvrOKeSQ_4H9xtY-ZpX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238121813</pqid></control><display><type>article</type><title>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</title><source>American Chemical Society Journals</source><creator>Lebouvier, Alexandre ; Cauneau, François ; Fulcheri, Laurent</creator><creatorcontrib>Lebouvier, Alexandre ; Cauneau, François ; Fulcheri, Laurent</creatorcontrib><description>The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/ef200471r</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Atmospheric pollution by diesel engines ; Atmospheric pollution models ; Catalysis and Kinetics ; Diesel engines ; domain_spi.energ ; Engineering Sciences ; Exhaust emissions ; feeding ; Fuels ; Kinetics ; Oxygen ; regeneration ; Temperature</subject><ispartof>Energy & fuels, 2011-07, Vol.25 (7), p.2833-2840</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</citedby><cites>FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</cites><orcidid>0000-0002-3843-431X ; 0000-0002-5646-8863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ef200471r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ef200471r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00613703$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebouvier, Alexandre</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><title>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</title><title>Energy & fuels</title><addtitle>Energy Fuels</addtitle><description>The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions.</description><subject>Atmospheric pollution by diesel engines</subject><subject>Atmospheric pollution models</subject><subject>Catalysis and Kinetics</subject><subject>Diesel engines</subject><subject>domain_spi.energ</subject><subject>Engineering Sciences</subject><subject>Exhaust emissions</subject><subject>feeding</subject><subject>Fuels</subject><subject>Kinetics</subject><subject>Oxygen</subject><subject>regeneration</subject><subject>Temperature</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1uFDEQhS1EJIaEBTfwBgkWDf7pbncvRzMkQQw_QmFt1bjLjCO7PdjdKLOLlCNwQ06Co0Fhw4JNVan0vdJTPUKec_aaM8HfoBWM1YqnR2TBG8Gqhon-MVmwrlMVa0X9hDzN-Zox1squWZA7sabLG5cPIeCUnKGrOO89DqWH_TzB5OIInp772Q10fRghOJN_3f5870acykg_xAG9G7_RaCnQj3GcdphCkSyToZ895AD0KiazozYmunaYsZybS_mCZROK9IycWPAZn_3pp-Tr-dur1WW1-XTxbrXcVCD7eqqarh5AmXbLuFV9r4zidhCtFF0NfdeisnUrDTS23doBZWOUYYDbbc17sLWx8pS8Ot7dgdf75AKkg47g9OVyo-935SlcKiZ_8MK-PLL7FL_PmCcdXDboPYwY56y5kB0XvBPiv1Eu_zowKeac0D7Y4Ezf56cf8ivsiyMLJuvrOKeSQ_4H9xtY-ZpX</recordid><startdate>20110721</startdate><enddate>20110721</enddate><creator>Lebouvier, Alexandre</creator><creator>Cauneau, François</creator><creator>Fulcheri, Laurent</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid></search><sort><creationdate>20110721</creationdate><title>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</title><author>Lebouvier, Alexandre ; Cauneau, François ; Fulcheri, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-584da7c6b01f7997c71fd263284a986e7f463ca5f6bfde35c7c0aebb419af4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric pollution by diesel engines</topic><topic>Atmospheric pollution models</topic><topic>Catalysis and Kinetics</topic><topic>Diesel engines</topic><topic>domain_spi.energ</topic><topic>Engineering Sciences</topic><topic>Exhaust emissions</topic><topic>feeding</topic><topic>Fuels</topic><topic>Kinetics</topic><topic>Oxygen</topic><topic>regeneration</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebouvier, Alexandre</creatorcontrib><creatorcontrib>Cauneau, François</creatorcontrib><creatorcontrib>Fulcheri, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebouvier, Alexandre</au><au>Cauneau, François</au><au>Fulcheri, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming</atitle><jtitle>Energy & fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2011-07-21</date><risdate>2011</risdate><volume>25</volume><issue>7</issue><spage>2833</spage><epage>2840</epage><pages>2833-2840</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The present study is dedicated to the 2D axisymmetric coupled computational fluid dynamics–kinetics modeling of a plasma-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel-cell feeding and (ii) NO x trap regeneration. These cases correspond to very different reaction conditions. In the first case, diesel fuel reacts with air, while in the second case, it reacts with diesel engine exhaust gas. The plasma is modeled with a simple power source domain. n-Heptane has been chosen as a surrogate molecule for diesel fuel. A reduced kinetic mechanism is used for the study. Both cases have been studied under adiabatic and nonadiabatic postreactor conditions. We can distinguish four zones in the torch: a reactant heating zone, a plasma zone, a mixing zone, and a postdischarge zone. The main precursors of the reforming reactions are H, O, and OH radicals. The oxygen rate is a key point of the application. The thermal losses make the reforming reaction difficult to ignite and beget a lower syngas production and a lower postdischarge temperature. For the nonadiabatic reactor, the results have been compared to experimental data. The model predicts relevant gas fractions.</abstract><pub>American Chemical Society</pub><doi>10.1021/ef200471r</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3843-431X</orcidid><orcidid>https://orcid.org/0000-0002-5646-8863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-0624 |
ispartof | Energy & fuels, 2011-07, Vol.25 (7), p.2833-2840 |
issn | 0887-0624 1520-5029 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00613703v1 |
source | American Chemical Society Journals |
subjects | Atmospheric pollution by diesel engines Atmospheric pollution models Catalysis and Kinetics Diesel engines domain_spi.energ Engineering Sciences Exhaust emissions feeding Fuels Kinetics Oxygen regeneration Temperature |
title | 2D Axisymmetric Coupled Computational Fluid Dynamics–Kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel Reforming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20Axisymmetric%20Coupled%20Computational%20Fluid%20Dynamics%E2%80%93Kinetics%20Modeling%20of%20a%20Nonthermal%20Arc%20Plasma%20Torch%20for%20Diesel%20Fuel%20Reforming&rft.jtitle=Energy%20&%20fuels&rft.au=Lebouvier,%20Alexandre&rft.date=2011-07-21&rft.volume=25&rft.issue=7&rft.spage=2833&rft.epage=2840&rft.pages=2833-2840&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/ef200471r&rft_dat=%3Cproquest_hal_p%3E1238121813%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238121813&rft_id=info:pmid/&rfr_iscdi=true |