Heat-transfer characteristics in multi-scale flow networks with parallel channels

The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering and processing 2010-07, Vol.49 (7), p.732-739
Hauptverfasser: Saber, M., Commenge, J.-M., Falk, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 7
container_start_page 732
container_title Chemical engineering and processing
container_volume 49
creator Saber, M.
Commenge, J.-M.
Falk, L.
description The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies.
doi_str_mv 10.1016/j.cep.2009.10.017
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00610872v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0255270109002190</els_id><sourcerecordid>oai_HAL_hal_00610872v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtePWydSbofxVMpaoWCCHoOaTKhqeluSWKL_94sFY-ehnl5n4F5GLtFmCBgfb-daNpPOMAs7xPA5oyNsG1EKThMz9kIeFWVvAG8ZFcxbgGgbrEasbclqVSmoLpoKRR6o4LSiYKLyelYuK7YffnkyqiVp8L6_lh0lI59-IzF0aVNsc-A9-QHtOvIx2t2YZWPdPM7x-zj6fF9sSxXr88vi_mq1EJgKmlqUNe1rdFUQoiK11NrwfJWoeBkjLa1WAPwdgamXQsFnKw2hq-NJW6NEWN2d7q7UV7ug9up8C175eRyvpJDll9EaBt-wNzFU1eHPsZA9g9AkIM_uZXZnxz8DVH2l5mHE5N_ooOjIKN21GkyLpBO0vTuH_oH3Y95vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat-transfer characteristics in multi-scale flow networks with parallel channels</title><source>Elsevier ScienceDirect Journals</source><creator>Saber, M. ; Commenge, J.-M. ; Falk, L.</creator><creatorcontrib>Saber, M. ; Commenge, J.-M. ; Falk, L.</creatorcontrib><description>The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies.</description><identifier>ISSN: 0255-2701</identifier><identifier>EISSN: 1873-3204</identifier><identifier>DOI: 10.1016/j.cep.2009.10.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical and Process Engineering ; Engineering Sciences ; Heat transfer ; Microchannels ; Microreactors ; Multi-scale networks ; Process intensification</subject><ispartof>Chemical engineering and processing, 2010-07, Vol.49 (7), p.732-739</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</citedby><cites>FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0255270109002190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00610872$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saber, M.</creatorcontrib><creatorcontrib>Commenge, J.-M.</creatorcontrib><creatorcontrib>Falk, L.</creatorcontrib><title>Heat-transfer characteristics in multi-scale flow networks with parallel channels</title><title>Chemical engineering and processing</title><description>The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies.</description><subject>Chemical and Process Engineering</subject><subject>Engineering Sciences</subject><subject>Heat transfer</subject><subject>Microchannels</subject><subject>Microreactors</subject><subject>Multi-scale networks</subject><subject>Process intensification</subject><issn>0255-2701</issn><issn>1873-3204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtePWydSbofxVMpaoWCCHoOaTKhqeluSWKL_94sFY-ehnl5n4F5GLtFmCBgfb-daNpPOMAs7xPA5oyNsG1EKThMz9kIeFWVvAG8ZFcxbgGgbrEasbclqVSmoLpoKRR6o4LSiYKLyelYuK7YffnkyqiVp8L6_lh0lI59-IzF0aVNsc-A9-QHtOvIx2t2YZWPdPM7x-zj6fF9sSxXr88vi_mq1EJgKmlqUNe1rdFUQoiK11NrwfJWoeBkjLa1WAPwdgamXQsFnKw2hq-NJW6NEWN2d7q7UV7ug9up8C175eRyvpJDll9EaBt-wNzFU1eHPsZA9g9AkIM_uZXZnxz8DVH2l5mHE5N_ooOjIKN21GkyLpBO0vTuH_oH3Y95vA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Saber, M.</creator><creator>Commenge, J.-M.</creator><creator>Falk, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20100701</creationdate><title>Heat-transfer characteristics in multi-scale flow networks with parallel channels</title><author>Saber, M. ; Commenge, J.-M. ; Falk, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemical and Process Engineering</topic><topic>Engineering Sciences</topic><topic>Heat transfer</topic><topic>Microchannels</topic><topic>Microreactors</topic><topic>Multi-scale networks</topic><topic>Process intensification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saber, M.</creatorcontrib><creatorcontrib>Commenge, J.-M.</creatorcontrib><creatorcontrib>Falk, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saber, M.</au><au>Commenge, J.-M.</au><au>Falk, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-transfer characteristics in multi-scale flow networks with parallel channels</atitle><jtitle>Chemical engineering and processing</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>49</volume><issue>7</issue><spage>732</spage><epage>739</epage><pages>732-739</pages><issn>0255-2701</issn><eissn>1873-3204</eissn><abstract>The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cep.2009.10.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-2701
ispartof Chemical engineering and processing, 2010-07, Vol.49 (7), p.732-739
issn 0255-2701
1873-3204
language eng
recordid cdi_hal_primary_oai_HAL_hal_00610872v1
source Elsevier ScienceDirect Journals
subjects Chemical and Process Engineering
Engineering Sciences
Heat transfer
Microchannels
Microreactors
Multi-scale networks
Process intensification
title Heat-transfer characteristics in multi-scale flow networks with parallel channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-transfer%20characteristics%20in%20multi-scale%20flow%20networks%20with%20parallel%20channels&rft.jtitle=Chemical%20engineering%20and%20processing&rft.au=Saber,%20M.&rft.date=2010-07-01&rft.volume=49&rft.issue=7&rft.spage=732&rft.epage=739&rft.pages=732-739&rft.issn=0255-2701&rft.eissn=1873-3204&rft_id=info:doi/10.1016/j.cep.2009.10.017&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00610872v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0255270109002190&rfr_iscdi=true