Heat-transfer characteristics in multi-scale flow networks with parallel channels
The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. T...
Gespeichert in:
Veröffentlicht in: | Chemical engineering and processing 2010-07, Vol.49 (7), p.732-739 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 7 |
container_start_page | 732 |
container_title | Chemical engineering and processing |
container_volume | 49 |
creator | Saber, M. Commenge, J.-M. Falk, L. |
description | The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies. |
doi_str_mv | 10.1016/j.cep.2009.10.017 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00610872v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0255270109002190</els_id><sourcerecordid>oai_HAL_hal_00610872v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtePWydSbofxVMpaoWCCHoOaTKhqeluSWKL_94sFY-ehnl5n4F5GLtFmCBgfb-daNpPOMAs7xPA5oyNsG1EKThMz9kIeFWVvAG8ZFcxbgGgbrEasbclqVSmoLpoKRR6o4LSiYKLyelYuK7YffnkyqiVp8L6_lh0lI59-IzF0aVNsc-A9-QHtOvIx2t2YZWPdPM7x-zj6fF9sSxXr88vi_mq1EJgKmlqUNe1rdFUQoiK11NrwfJWoeBkjLa1WAPwdgamXQsFnKw2hq-NJW6NEWN2d7q7UV7ug9up8C175eRyvpJDll9EaBt-wNzFU1eHPsZA9g9AkIM_uZXZnxz8DVH2l5mHE5N_ooOjIKN21GkyLpBO0vTuH_oH3Y95vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat-transfer characteristics in multi-scale flow networks with parallel channels</title><source>Elsevier ScienceDirect Journals</source><creator>Saber, M. ; Commenge, J.-M. ; Falk, L.</creator><creatorcontrib>Saber, M. ; Commenge, J.-M. ; Falk, L.</creatorcontrib><description>The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies.</description><identifier>ISSN: 0255-2701</identifier><identifier>EISSN: 1873-3204</identifier><identifier>DOI: 10.1016/j.cep.2009.10.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical and Process Engineering ; Engineering Sciences ; Heat transfer ; Microchannels ; Microreactors ; Multi-scale networks ; Process intensification</subject><ispartof>Chemical engineering and processing, 2010-07, Vol.49 (7), p.732-739</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</citedby><cites>FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0255270109002190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00610872$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saber, M.</creatorcontrib><creatorcontrib>Commenge, J.-M.</creatorcontrib><creatorcontrib>Falk, L.</creatorcontrib><title>Heat-transfer characteristics in multi-scale flow networks with parallel channels</title><title>Chemical engineering and processing</title><description>The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies.</description><subject>Chemical and Process Engineering</subject><subject>Engineering Sciences</subject><subject>Heat transfer</subject><subject>Microchannels</subject><subject>Microreactors</subject><subject>Multi-scale networks</subject><subject>Process intensification</subject><issn>0255-2701</issn><issn>1873-3204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtePWydSbofxVMpaoWCCHoOaTKhqeluSWKL_94sFY-ehnl5n4F5GLtFmCBgfb-daNpPOMAs7xPA5oyNsG1EKThMz9kIeFWVvAG8ZFcxbgGgbrEasbclqVSmoLpoKRR6o4LSiYKLyelYuK7YffnkyqiVp8L6_lh0lI59-IzF0aVNsc-A9-QHtOvIx2t2YZWPdPM7x-zj6fF9sSxXr88vi_mq1EJgKmlqUNe1rdFUQoiK11NrwfJWoeBkjLa1WAPwdgamXQsFnKw2hq-NJW6NEWN2d7q7UV7ug9up8C175eRyvpJDll9EaBt-wNzFU1eHPsZA9g9AkIM_uZXZnxz8DVH2l5mHE5N_ooOjIKN21GkyLpBO0vTuH_oH3Y95vA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Saber, M.</creator><creator>Commenge, J.-M.</creator><creator>Falk, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20100701</creationdate><title>Heat-transfer characteristics in multi-scale flow networks with parallel channels</title><author>Saber, M. ; Commenge, J.-M. ; Falk, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e4d1c66f61d53335264ff0f28a132eddcf63b002890d8b3a02efcdd2bdfe2fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemical and Process Engineering</topic><topic>Engineering Sciences</topic><topic>Heat transfer</topic><topic>Microchannels</topic><topic>Microreactors</topic><topic>Multi-scale networks</topic><topic>Process intensification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saber, M.</creatorcontrib><creatorcontrib>Commenge, J.-M.</creatorcontrib><creatorcontrib>Falk, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saber, M.</au><au>Commenge, J.-M.</au><au>Falk, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-transfer characteristics in multi-scale flow networks with parallel channels</atitle><jtitle>Chemical engineering and processing</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>49</volume><issue>7</issue><spage>732</spage><epage>739</epage><pages>732-739</pages><issn>0255-2701</issn><eissn>1873-3204</eissn><abstract>The potentials of microstructured systems have already been demonstrated for a large number of applications in chemical engineering. Nevertheless, the rational use of these systems at industrial scale rises new questions, among which the strategies to structure internal flow appear as a key issue. The present study explores the geometries of complex flow networks with parallelized channels and highlights their respective design issues. The impact of arranging channels of different dimensions on the thermal performances of the resulting multi-scale networks is investigated considering the flow maldistribution problem. The hydrothermal network efficiencies are quantified and compared with respect to several geometrical and physical constraints, in order to propose design guidelines and channel arrangement strategies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cep.2009.10.017</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-2701 |
ispartof | Chemical engineering and processing, 2010-07, Vol.49 (7), p.732-739 |
issn | 0255-2701 1873-3204 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00610872v1 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical and Process Engineering Engineering Sciences Heat transfer Microchannels Microreactors Multi-scale networks Process intensification |
title | Heat-transfer characteristics in multi-scale flow networks with parallel channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-transfer%20characteristics%20in%20multi-scale%20flow%20networks%20with%20parallel%20channels&rft.jtitle=Chemical%20engineering%20and%20processing&rft.au=Saber,%20M.&rft.date=2010-07-01&rft.volume=49&rft.issue=7&rft.spage=732&rft.epage=739&rft.pages=732-739&rft.issn=0255-2701&rft.eissn=1873-3204&rft_id=info:doi/10.1016/j.cep.2009.10.017&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00610872v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0255270109002190&rfr_iscdi=true |