How To Prepare and Stabilize Very Small Nanoemulsions

Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2011-03, Vol.27 (5), p.1683-1692
Hauptverfasser: Delmas, Thomas, Piraux, Hélène, Couffin, Anne-Claude, Texier, Isabelle, Vinet, Françoise, Poulin, Philippe, Cates, Michael E, Bibette, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1692
container_issue 5
container_start_page 1683
container_title Langmuir
container_volume 27
creator Delmas, Thomas
Piraux, Hélène
Couffin, Anne-Claude
Texier, Isabelle
Vinet, Françoise
Poulin, Philippe
Cates, Michael E
Bibette, Jérôme
description Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.
doi_str_mv 10.1021/la104221q
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00605087v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>859057413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</originalsourceid><addsrcrecordid>eNpt0M1LwzAYx_Egis7pwX9AehHxUH3y1jRHGeqEoYIv1_C0TbEjbWayKvrXW3FuF0-B8OH7wI-QIwrnFBi9cEhBMEbftsiISgapzJnaJiNQgqdKZHyP7Mc4BwDNhd4le4wylgmdjYic-o_kyScPwS4w2AS7KnlcYtG45ssmLzZ8Jo8tOpfcYedt27vY-C4ekJ0aXbSHq3dMnq-vnibTdHZ_czu5nKUohFimDIui5siqsuJQMcyFYHXJEIqC0hwoyLpmlZXW5lRrxXUhMysKJWsBimbAx-Tst_uKzixC02L4NB4bM72cmZ8_gAwk5OqdDvb01y6Cf-ttXJq2iaV1Djvr-2hyqUEqQfmmWgYfY7D1Ok3B_Axq1oMO9nhV7YvWVmv5t-AATlYAY4muDtiVTdw4nutMcdg4LKOZ-z50w3D_HPwGmwiGdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859057413</pqid></control><display><type>article</type><title>How To Prepare and Stabilize Very Small Nanoemulsions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Delmas, Thomas ; Piraux, Hélène ; Couffin, Anne-Claude ; Texier, Isabelle ; Vinet, Françoise ; Poulin, Philippe ; Cates, Michael E ; Bibette, Jérôme</creator><creatorcontrib>Delmas, Thomas ; Piraux, Hélène ; Couffin, Anne-Claude ; Texier, Isabelle ; Vinet, Françoise ; Poulin, Philippe ; Cates, Michael E ; Bibette, Jérôme</creatorcontrib><description>Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la104221q</identifier><identifier>PMID: 21226496</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams ; Condensed Matter ; Emulsions - chemistry ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; Material chemistry ; Membranes ; Membranes, Artificial ; Nanostructures - chemistry ; Physics ; Soft Condensed Matter ; Sonication ; Surface-Active Agents - chemistry</subject><ispartof>Langmuir, 2011-03, Vol.27 (5), p.1683-1692</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</citedby><cites>FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</cites><orcidid>0000-0001-7748-8671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la104221q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la104221q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23896730$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21226496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00605087$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delmas, Thomas</creatorcontrib><creatorcontrib>Piraux, Hélène</creatorcontrib><creatorcontrib>Couffin, Anne-Claude</creatorcontrib><creatorcontrib>Texier, Isabelle</creatorcontrib><creatorcontrib>Vinet, Françoise</creatorcontrib><creatorcontrib>Poulin, Philippe</creatorcontrib><creatorcontrib>Cates, Michael E</creatorcontrib><creatorcontrib>Bibette, Jérôme</creatorcontrib><title>How To Prepare and Stabilize Very Small Nanoemulsions</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</subject><subject>Condensed Matter</subject><subject>Emulsions - chemistry</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Material chemistry</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanostructures - chemistry</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Sonication</subject><subject>Surface-Active Agents - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1LwzAYx_Egis7pwX9AehHxUH3y1jRHGeqEoYIv1_C0TbEjbWayKvrXW3FuF0-B8OH7wI-QIwrnFBi9cEhBMEbftsiISgapzJnaJiNQgqdKZHyP7Mc4BwDNhd4le4wylgmdjYic-o_kyScPwS4w2AS7KnlcYtG45ssmLzZ8Jo8tOpfcYedt27vY-C4ekJ0aXbSHq3dMnq-vnibTdHZ_czu5nKUohFimDIui5siqsuJQMcyFYHXJEIqC0hwoyLpmlZXW5lRrxXUhMysKJWsBimbAx-Tst_uKzixC02L4NB4bM72cmZ8_gAwk5OqdDvb01y6Cf-ttXJq2iaV1Djvr-2hyqUEqQfmmWgYfY7D1Ok3B_Axq1oMO9nhV7YvWVmv5t-AATlYAY4muDtiVTdw4nutMcdg4LKOZ-z50w3D_HPwGmwiGdg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Delmas, Thomas</creator><creator>Piraux, Hélène</creator><creator>Couffin, Anne-Claude</creator><creator>Texier, Isabelle</creator><creator>Vinet, Françoise</creator><creator>Poulin, Philippe</creator><creator>Cates, Michael E</creator><creator>Bibette, Jérôme</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7748-8671</orcidid></search><sort><creationdate>20110301</creationdate><title>How To Prepare and Stabilize Very Small Nanoemulsions</title><author>Delmas, Thomas ; Piraux, Hélène ; Couffin, Anne-Claude ; Texier, Isabelle ; Vinet, Françoise ; Poulin, Philippe ; Cates, Michael E ; Bibette, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</topic><topic>Condensed Matter</topic><topic>Emulsions - chemistry</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Material chemistry</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanostructures - chemistry</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Sonication</topic><topic>Surface-Active Agents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delmas, Thomas</creatorcontrib><creatorcontrib>Piraux, Hélène</creatorcontrib><creatorcontrib>Couffin, Anne-Claude</creatorcontrib><creatorcontrib>Texier, Isabelle</creatorcontrib><creatorcontrib>Vinet, Françoise</creatorcontrib><creatorcontrib>Poulin, Philippe</creatorcontrib><creatorcontrib>Cates, Michael E</creatorcontrib><creatorcontrib>Bibette, Jérôme</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delmas, Thomas</au><au>Piraux, Hélène</au><au>Couffin, Anne-Claude</au><au>Texier, Isabelle</au><au>Vinet, Françoise</au><au>Poulin, Philippe</au><au>Cates, Michael E</au><au>Bibette, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How To Prepare and Stabilize Very Small Nanoemulsions</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>27</volume><issue>5</issue><spage>1683</spage><epage>1692</epage><pages>1683-1692</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21226496</pmid><doi>10.1021/la104221q</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7748-8671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2011-03, Vol.27 (5), p.1683-1692
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_00605087v1
source MEDLINE; ACS Publications
subjects Chemical Sciences
Chemistry
Colloidal state and disperse state
Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams
Condensed Matter
Emulsions - chemistry
Emulsions. Microemulsions. Foams
Exact sciences and technology
General and physical chemistry
Material chemistry
Membranes
Membranes, Artificial
Nanostructures - chemistry
Physics
Soft Condensed Matter
Sonication
Surface-Active Agents - chemistry
title How To Prepare and Stabilize Very Small Nanoemulsions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20To%20Prepare%20and%20Stabilize%20Very%20Small%20Nanoemulsions&rft.jtitle=Langmuir&rft.au=Delmas,%20Thomas&rft.date=2011-03-01&rft.volume=27&rft.issue=5&rft.spage=1683&rft.epage=1692&rft.pages=1683-1692&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la104221q&rft_dat=%3Cproquest_hal_p%3E859057413%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859057413&rft_id=info:pmid/21226496&rfr_iscdi=true