How To Prepare and Stabilize Very Small Nanoemulsions
Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function...
Gespeichert in:
Veröffentlicht in: | Langmuir 2011-03, Vol.27 (5), p.1683-1692 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1692 |
---|---|
container_issue | 5 |
container_start_page | 1683 |
container_title | Langmuir |
container_volume | 27 |
creator | Delmas, Thomas Piraux, Hélène Couffin, Anne-Claude Texier, Isabelle Vinet, Françoise Poulin, Philippe Cates, Michael E Bibette, Jérôme |
description | Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability. |
doi_str_mv | 10.1021/la104221q |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00605087v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>859057413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</originalsourceid><addsrcrecordid>eNpt0M1LwzAYx_Egis7pwX9AehHxUH3y1jRHGeqEoYIv1_C0TbEjbWayKvrXW3FuF0-B8OH7wI-QIwrnFBi9cEhBMEbftsiISgapzJnaJiNQgqdKZHyP7Mc4BwDNhd4le4wylgmdjYic-o_kyScPwS4w2AS7KnlcYtG45ssmLzZ8Jo8tOpfcYedt27vY-C4ekJ0aXbSHq3dMnq-vnibTdHZ_czu5nKUohFimDIui5siqsuJQMcyFYHXJEIqC0hwoyLpmlZXW5lRrxXUhMysKJWsBimbAx-Tst_uKzixC02L4NB4bM72cmZ8_gAwk5OqdDvb01y6Cf-ttXJq2iaV1Djvr-2hyqUEqQfmmWgYfY7D1Ok3B_Axq1oMO9nhV7YvWVmv5t-AATlYAY4muDtiVTdw4nutMcdg4LKOZ-z50w3D_HPwGmwiGdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859057413</pqid></control><display><type>article</type><title>How To Prepare and Stabilize Very Small Nanoemulsions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Delmas, Thomas ; Piraux, Hélène ; Couffin, Anne-Claude ; Texier, Isabelle ; Vinet, Françoise ; Poulin, Philippe ; Cates, Michael E ; Bibette, Jérôme</creator><creatorcontrib>Delmas, Thomas ; Piraux, Hélène ; Couffin, Anne-Claude ; Texier, Isabelle ; Vinet, Françoise ; Poulin, Philippe ; Cates, Michael E ; Bibette, Jérôme</creatorcontrib><description>Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la104221q</identifier><identifier>PMID: 21226496</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams ; Condensed Matter ; Emulsions - chemistry ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; Material chemistry ; Membranes ; Membranes, Artificial ; Nanostructures - chemistry ; Physics ; Soft Condensed Matter ; Sonication ; Surface-Active Agents - chemistry</subject><ispartof>Langmuir, 2011-03, Vol.27 (5), p.1683-1692</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</citedby><cites>FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</cites><orcidid>0000-0001-7748-8671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la104221q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la104221q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23896730$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21226496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00605087$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delmas, Thomas</creatorcontrib><creatorcontrib>Piraux, Hélène</creatorcontrib><creatorcontrib>Couffin, Anne-Claude</creatorcontrib><creatorcontrib>Texier, Isabelle</creatorcontrib><creatorcontrib>Vinet, Françoise</creatorcontrib><creatorcontrib>Poulin, Philippe</creatorcontrib><creatorcontrib>Cates, Michael E</creatorcontrib><creatorcontrib>Bibette, Jérôme</creatorcontrib><title>How To Prepare and Stabilize Very Small Nanoemulsions</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</subject><subject>Condensed Matter</subject><subject>Emulsions - chemistry</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Material chemistry</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanostructures - chemistry</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Sonication</subject><subject>Surface-Active Agents - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1LwzAYx_Egis7pwX9AehHxUH3y1jRHGeqEoYIv1_C0TbEjbWayKvrXW3FuF0-B8OH7wI-QIwrnFBi9cEhBMEbftsiISgapzJnaJiNQgqdKZHyP7Mc4BwDNhd4le4wylgmdjYic-o_kyScPwS4w2AS7KnlcYtG45ssmLzZ8Jo8tOpfcYedt27vY-C4ekJ0aXbSHq3dMnq-vnibTdHZ_czu5nKUohFimDIui5siqsuJQMcyFYHXJEIqC0hwoyLpmlZXW5lRrxXUhMysKJWsBimbAx-Tst_uKzixC02L4NB4bM72cmZ8_gAwk5OqdDvb01y6Cf-ttXJq2iaV1Djvr-2hyqUEqQfmmWgYfY7D1Ok3B_Axq1oMO9nhV7YvWVmv5t-AATlYAY4muDtiVTdw4nutMcdg4LKOZ-z50w3D_HPwGmwiGdg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Delmas, Thomas</creator><creator>Piraux, Hélène</creator><creator>Couffin, Anne-Claude</creator><creator>Texier, Isabelle</creator><creator>Vinet, Françoise</creator><creator>Poulin, Philippe</creator><creator>Cates, Michael E</creator><creator>Bibette, Jérôme</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7748-8671</orcidid></search><sort><creationdate>20110301</creationdate><title>How To Prepare and Stabilize Very Small Nanoemulsions</title><author>Delmas, Thomas ; Piraux, Hélène ; Couffin, Anne-Claude ; Texier, Isabelle ; Vinet, Françoise ; Poulin, Philippe ; Cates, Michael E ; Bibette, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-2abbf3a2dcd30d2a8442fc2a0bb1180105ff2de5ee8199739b56e4b75f4071603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</topic><topic>Condensed Matter</topic><topic>Emulsions - chemistry</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Material chemistry</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanostructures - chemistry</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Sonication</topic><topic>Surface-Active Agents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delmas, Thomas</creatorcontrib><creatorcontrib>Piraux, Hélène</creatorcontrib><creatorcontrib>Couffin, Anne-Claude</creatorcontrib><creatorcontrib>Texier, Isabelle</creatorcontrib><creatorcontrib>Vinet, Françoise</creatorcontrib><creatorcontrib>Poulin, Philippe</creatorcontrib><creatorcontrib>Cates, Michael E</creatorcontrib><creatorcontrib>Bibette, Jérôme</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delmas, Thomas</au><au>Piraux, Hélène</au><au>Couffin, Anne-Claude</au><au>Texier, Isabelle</au><au>Vinet, Françoise</au><au>Poulin, Philippe</au><au>Cates, Michael E</au><au>Bibette, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How To Prepare and Stabilize Very Small Nanoemulsions</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>27</volume><issue>5</issue><spage>1683</spage><epage>1692</epage><pages>1683-1692</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of “trapped species” within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21226496</pmid><doi>10.1021/la104221q</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7748-8671</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2011-03, Vol.27 (5), p.1683-1692 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00605087v1 |
source | MEDLINE; ACS Publications |
subjects | Chemical Sciences Chemistry Colloidal state and disperse state Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams Condensed Matter Emulsions - chemistry Emulsions. Microemulsions. Foams Exact sciences and technology General and physical chemistry Material chemistry Membranes Membranes, Artificial Nanostructures - chemistry Physics Soft Condensed Matter Sonication Surface-Active Agents - chemistry |
title | How To Prepare and Stabilize Very Small Nanoemulsions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20To%20Prepare%20and%20Stabilize%20Very%20Small%20Nanoemulsions&rft.jtitle=Langmuir&rft.au=Delmas,%20Thomas&rft.date=2011-03-01&rft.volume=27&rft.issue=5&rft.spage=1683&rft.epage=1692&rft.pages=1683-1692&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la104221q&rft_dat=%3Cproquest_hal_p%3E859057413%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859057413&rft_id=info:pmid/21226496&rfr_iscdi=true |