Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics
Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the p...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2011-04, Vol.332 (6026), p.206-209 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 6026 |
container_start_page | 206 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 332 |
creator | Baram, Mor Chatain, Dominique Kaplan, Wayne D. |
description | Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines. |
doi_str_mv | 10.1126/science.1201596 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00603255v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29784025</jstor_id><sourcerecordid>29784025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1Wz56UQSjqYdqX34m3tbS2sOhl9RqymQybdSbTJjNK_3uz7NiCBz2F5H3ySN4XoVcYzjAm4jy74KPzZ5gA5lo8QQsMmteaAH2KFgBU1AokP0LHOe8ASk3T5-iIYCaZ5GSBvn-xcej96FO93gb3o7q8m0IXNilMfXUVuj5_rNZbX93EQlrrfPXJj7-8j_vT1A_NfbR9cLmysamW49CHPJbtC_SstV32L-f1BH27ulxfXNerr59vLpar2nEGY73R0ChLJN64BqjXUlHaAGst9UxJcFhy8JY4xhm2omlBOyqE1W2jKBGS0hP04dB3aztzm0Jv070ZbDDXy5XZnwEIoITzn7jYdwd7m4a7yefRlMc633U2-mHKRgNjUgis_yuVKPNWkkKR7_8psZQSC4IlK_TtX3Q3TCmW6ZR-Siop-L7f-QG5NOScfPvwKQxmn7iZEzdz4uXGm7nttOl98-D_RFzA6QxsdrZrk40u5EfHMFDGeHGvD26XxyE91ksoDAinvwGKs7uq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868787650</pqid></control><display><type>article</type><title>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Baram, Mor ; Chatain, Dominique ; Kaplan, Wayne D.</creator><creatorcontrib>Baram, Mor ; Chatain, Dominique ; Kaplan, Wayne D.</creatorcontrib><description>Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1201596</identifier><identifier>PMID: 21474752</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adsorption ; Anorthite ; Balancing ; Calcium aluminum silicates ; Chemical composition ; Condensed Matter ; Condensed matter: structure, mechanical and thermal properties ; Criteria ; Energy ; Exact sciences and technology ; Geometric planes ; Glass ; Interface structure and roughness ; Isotherms ; Material films ; Materials Science ; Phase diagrams ; Physics ; Sapphire ; Solid surfaces and solid-solid interfaces ; Surface chemistry ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermodynamics ; Thin films ; Wetting</subject><ispartof>Science (American Association for the Advancement of Science), 2011-04, Vol.332 (6026), p.206-209</ispartof><rights>Copyright © 2011 The American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</citedby><cites>FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</cites><orcidid>0000-0002-9654-7291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29784025$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29784025$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24103445$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21474752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00603255$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baram, Mor</creatorcontrib><creatorcontrib>Chatain, Dominique</creatorcontrib><creatorcontrib>Kaplan, Wayne D.</creatorcontrib><title>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.</description><subject>Adsorption</subject><subject>Anorthite</subject><subject>Balancing</subject><subject>Calcium aluminum silicates</subject><subject>Chemical composition</subject><subject>Condensed Matter</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Criteria</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Geometric planes</subject><subject>Glass</subject><subject>Interface structure and roughness</subject><subject>Isotherms</subject><subject>Material films</subject><subject>Materials Science</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Sapphire</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surface chemistry</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermodynamics</subject><subject>Thin films</subject><subject>Wetting</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFDEUB_Agit1Wz56UQSjqYdqX34m3tbS2sOhl9RqymQybdSbTJjNK_3uz7NiCBz2F5H3ySN4XoVcYzjAm4jy74KPzZ5gA5lo8QQsMmteaAH2KFgBU1AokP0LHOe8ASk3T5-iIYCaZ5GSBvn-xcej96FO93gb3o7q8m0IXNilMfXUVuj5_rNZbX93EQlrrfPXJj7-8j_vT1A_NfbR9cLmysamW49CHPJbtC_SstV32L-f1BH27ulxfXNerr59vLpar2nEGY73R0ChLJN64BqjXUlHaAGst9UxJcFhy8JY4xhm2omlBOyqE1W2jKBGS0hP04dB3aztzm0Jv070ZbDDXy5XZnwEIoITzn7jYdwd7m4a7yefRlMc633U2-mHKRgNjUgis_yuVKPNWkkKR7_8psZQSC4IlK_TtX3Q3TCmW6ZR-Siop-L7f-QG5NOScfPvwKQxmn7iZEzdz4uXGm7nttOl98-D_RFzA6QxsdrZrk40u5EfHMFDGeHGvD26XxyE91ksoDAinvwGKs7uq</recordid><startdate>20110408</startdate><enddate>20110408</enddate><creator>Baram, Mor</creator><creator>Chatain, Dominique</creator><creator>Kaplan, Wayne D.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7SU</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9654-7291</orcidid></search><sort><creationdate>20110408</creationdate><title>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</title><author>Baram, Mor ; Chatain, Dominique ; Kaplan, Wayne D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Anorthite</topic><topic>Balancing</topic><topic>Calcium aluminum silicates</topic><topic>Chemical composition</topic><topic>Condensed Matter</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Criteria</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Geometric planes</topic><topic>Glass</topic><topic>Interface structure and roughness</topic><topic>Isotherms</topic><topic>Material films</topic><topic>Materials Science</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Sapphire</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surface chemistry</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermodynamics</topic><topic>Thin films</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baram, Mor</creatorcontrib><creatorcontrib>Chatain, Dominique</creatorcontrib><creatorcontrib>Kaplan, Wayne D.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baram, Mor</au><au>Chatain, Dominique</au><au>Kaplan, Wayne D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-04-08</date><risdate>2011</risdate><volume>332</volume><issue>6026</issue><spage>206</spage><epage>209</epage><pages>206-209</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>21474752</pmid><doi>10.1126/science.1201596</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9654-7291</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2011-04, Vol.332 (6026), p.206-209 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00603255v1 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Adsorption Anorthite Balancing Calcium aluminum silicates Chemical composition Condensed Matter Condensed matter: structure, mechanical and thermal properties Criteria Energy Exact sciences and technology Geometric planes Glass Interface structure and roughness Isotherms Material films Materials Science Phase diagrams Physics Sapphire Solid surfaces and solid-solid interfaces Surface chemistry Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thermodynamics Thin films Wetting |
title | Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanometer-Thick%20Equilibrium%20Films:%20The%20Interface%20Between%20Thermodynamics%20and%20Atomistics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Baram,%20Mor&rft.date=2011-04-08&rft.volume=332&rft.issue=6026&rft.spage=206&rft.epage=209&rft.pages=206-209&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1201596&rft_dat=%3Cjstor_hal_p%3E29784025%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868787650&rft_id=info:pmid/21474752&rft_jstor_id=29784025&rfr_iscdi=true |