Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics

Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2011-04, Vol.332 (6026), p.206-209
Hauptverfasser: Baram, Mor, Chatain, Dominique, Kaplan, Wayne D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 6026
container_start_page 206
container_title Science (American Association for the Advancement of Science)
container_volume 332
creator Baram, Mor
Chatain, Dominique
Kaplan, Wayne D.
description Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.
doi_str_mv 10.1126/science.1201596
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00603255v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29784025</jstor_id><sourcerecordid>29784025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1Wz56UQSjqYdqX34m3tbS2sOhl9RqymQybdSbTJjNK_3uz7NiCBz2F5H3ySN4XoVcYzjAm4jy74KPzZ5gA5lo8QQsMmteaAH2KFgBU1AokP0LHOe8ASk3T5-iIYCaZ5GSBvn-xcej96FO93gb3o7q8m0IXNilMfXUVuj5_rNZbX93EQlrrfPXJj7-8j_vT1A_NfbR9cLmysamW49CHPJbtC_SstV32L-f1BH27ulxfXNerr59vLpar2nEGY73R0ChLJN64BqjXUlHaAGst9UxJcFhy8JY4xhm2omlBOyqE1W2jKBGS0hP04dB3aztzm0Jv070ZbDDXy5XZnwEIoITzn7jYdwd7m4a7yefRlMc633U2-mHKRgNjUgis_yuVKPNWkkKR7_8psZQSC4IlK_TtX3Q3TCmW6ZR-Siop-L7f-QG5NOScfPvwKQxmn7iZEzdz4uXGm7nttOl98-D_RFzA6QxsdrZrk40u5EfHMFDGeHGvD26XxyE91ksoDAinvwGKs7uq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868787650</pqid></control><display><type>article</type><title>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Baram, Mor ; Chatain, Dominique ; Kaplan, Wayne D.</creator><creatorcontrib>Baram, Mor ; Chatain, Dominique ; Kaplan, Wayne D.</creatorcontrib><description>Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1201596</identifier><identifier>PMID: 21474752</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adsorption ; Anorthite ; Balancing ; Calcium aluminum silicates ; Chemical composition ; Condensed Matter ; Condensed matter: structure, mechanical and thermal properties ; Criteria ; Energy ; Exact sciences and technology ; Geometric planes ; Glass ; Interface structure and roughness ; Isotherms ; Material films ; Materials Science ; Phase diagrams ; Physics ; Sapphire ; Solid surfaces and solid-solid interfaces ; Surface chemistry ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermodynamics ; Thin films ; Wetting</subject><ispartof>Science (American Association for the Advancement of Science), 2011-04, Vol.332 (6026), p.206-209</ispartof><rights>Copyright © 2011 The American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</citedby><cites>FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</cites><orcidid>0000-0002-9654-7291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29784025$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29784025$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24103445$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21474752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00603255$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baram, Mor</creatorcontrib><creatorcontrib>Chatain, Dominique</creatorcontrib><creatorcontrib>Kaplan, Wayne D.</creatorcontrib><title>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.</description><subject>Adsorption</subject><subject>Anorthite</subject><subject>Balancing</subject><subject>Calcium aluminum silicates</subject><subject>Chemical composition</subject><subject>Condensed Matter</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Criteria</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Geometric planes</subject><subject>Glass</subject><subject>Interface structure and roughness</subject><subject>Isotherms</subject><subject>Material films</subject><subject>Materials Science</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Sapphire</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surface chemistry</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermodynamics</subject><subject>Thin films</subject><subject>Wetting</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFDEUB_Agit1Wz56UQSjqYdqX34m3tbS2sOhl9RqymQybdSbTJjNK_3uz7NiCBz2F5H3ySN4XoVcYzjAm4jy74KPzZ5gA5lo8QQsMmteaAH2KFgBU1AokP0LHOe8ASk3T5-iIYCaZ5GSBvn-xcej96FO93gb3o7q8m0IXNilMfXUVuj5_rNZbX93EQlrrfPXJj7-8j_vT1A_NfbR9cLmysamW49CHPJbtC_SstV32L-f1BH27ulxfXNerr59vLpar2nEGY73R0ChLJN64BqjXUlHaAGst9UxJcFhy8JY4xhm2omlBOyqE1W2jKBGS0hP04dB3aztzm0Jv070ZbDDXy5XZnwEIoITzn7jYdwd7m4a7yefRlMc633U2-mHKRgNjUgis_yuVKPNWkkKR7_8psZQSC4IlK_TtX3Q3TCmW6ZR-Siop-L7f-QG5NOScfPvwKQxmn7iZEzdz4uXGm7nttOl98-D_RFzA6QxsdrZrk40u5EfHMFDGeHGvD26XxyE91ksoDAinvwGKs7uq</recordid><startdate>20110408</startdate><enddate>20110408</enddate><creator>Baram, Mor</creator><creator>Chatain, Dominique</creator><creator>Kaplan, Wayne D.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7SU</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9654-7291</orcidid></search><sort><creationdate>20110408</creationdate><title>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</title><author>Baram, Mor ; Chatain, Dominique ; Kaplan, Wayne D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b90d8a271bcd03e97833d04fa3e4870c1750ea2c4541a6df09c366a9fd8326733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Anorthite</topic><topic>Balancing</topic><topic>Calcium aluminum silicates</topic><topic>Chemical composition</topic><topic>Condensed Matter</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Criteria</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Geometric planes</topic><topic>Glass</topic><topic>Interface structure and roughness</topic><topic>Isotherms</topic><topic>Material films</topic><topic>Materials Science</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Sapphire</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surface chemistry</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermodynamics</topic><topic>Thin films</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baram, Mor</creatorcontrib><creatorcontrib>Chatain, Dominique</creatorcontrib><creatorcontrib>Kaplan, Wayne D.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baram, Mor</au><au>Chatain, Dominique</au><au>Kaplan, Wayne D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2011-04-08</date><risdate>2011</risdate><volume>332</volume><issue>6026</issue><spage>206</spage><epage>209</epage><pages>206-209</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>21474752</pmid><doi>10.1126/science.1201596</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9654-7291</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2011-04, Vol.332 (6026), p.206-209
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_00603255v1
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Adsorption
Anorthite
Balancing
Calcium aluminum silicates
Chemical composition
Condensed Matter
Condensed matter: structure, mechanical and thermal properties
Criteria
Energy
Exact sciences and technology
Geometric planes
Glass
Interface structure and roughness
Isotherms
Material films
Materials Science
Phase diagrams
Physics
Sapphire
Solid surfaces and solid-solid interfaces
Surface chemistry
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thermodynamics
Thin films
Wetting
title Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanometer-Thick%20Equilibrium%20Films:%20The%20Interface%20Between%20Thermodynamics%20and%20Atomistics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Baram,%20Mor&rft.date=2011-04-08&rft.volume=332&rft.issue=6026&rft.spage=206&rft.epage=209&rft.pages=206-209&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1201596&rft_dat=%3Cjstor_hal_p%3E29784025%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868787650&rft_id=info:pmid/21474752&rft_jstor_id=29784025&rfr_iscdi=true