Matching two clusters of points extracted from satellite images
Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2006-03, Vol.27 (4), p.268-274 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | 4 |
container_start_page | 268 |
container_title | Pattern recognition letters |
container_volume | 27 |
creator | Navy, Patrice Page, Vincent Grandchamp, Enguerran Desachy, Jacky |
description | Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler. |
doi_str_mv | 10.1016/j.patrec.2005.08.008 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00602280v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865505002217</els_id><sourcerecordid>oai_HAL_hal_00602280v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEOuHnbNx2529qKUolZY8aLnkOajTdl2SxKr_ntTVjx6Ghie5x3mReiakpISKm435V6lYHXJCKlLAiUhcIImFBpWNLyqTtEkY00Boq7P0UWMG0KI4C1M0P2LSnrtdyucPges-4-YbIh4cHg_-F2K2H6loHSyBrswbHFUyfa9Txb7rVrZeInOnOqjvfqdU_T--PA2XxTd69PzfNYVmoNIBWUAwrWmYVwA5YY5qpXjTlthdAuiMdBq4QQ0rTMVcM6XrYAlb5c1GFUpPkU3Y-5a9XIf8vHwLQfl5WLWyeMuP0QYA3Kgma1GVochxmDdn0CJPBYmN3IsTB4LkwSyDVm7GzWb_zh4G2TU3u60NT6jSZrB_x_wAzJ4dcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matching two clusters of points extracted from satellite images</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Navy, Patrice ; Page, Vincent ; Grandchamp, Enguerran ; Desachy, Jacky</creator><creatorcontrib>Navy, Patrice ; Page, Vincent ; Grandchamp, Enguerran ; Desachy, Jacky</creatorcontrib><description>Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2005.08.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Clusters of points ; Computer Science ; Homography ; Image matching ; Image Processing</subject><ispartof>Pattern recognition letters, 2006-03, Vol.27 (4), p.268-274</ispartof><rights>2005 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</citedby><cites>FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</cites><orcidid>0000-0002-1535-662X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2005.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00602280$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Navy, Patrice</creatorcontrib><creatorcontrib>Page, Vincent</creatorcontrib><creatorcontrib>Grandchamp, Enguerran</creatorcontrib><creatorcontrib>Desachy, Jacky</creatorcontrib><title>Matching two clusters of points extracted from satellite images</title><title>Pattern recognition letters</title><description>Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler.</description><subject>Clusters of points</subject><subject>Computer Science</subject><subject>Homography</subject><subject>Image matching</subject><subject>Image Processing</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEOuHnbNx2529qKUolZY8aLnkOajTdl2SxKr_ntTVjx6Ghie5x3mReiakpISKm435V6lYHXJCKlLAiUhcIImFBpWNLyqTtEkY00Boq7P0UWMG0KI4C1M0P2LSnrtdyucPges-4-YbIh4cHg_-F2K2H6loHSyBrswbHFUyfa9Txb7rVrZeInOnOqjvfqdU_T--PA2XxTd69PzfNYVmoNIBWUAwrWmYVwA5YY5qpXjTlthdAuiMdBq4QQ0rTMVcM6XrYAlb5c1GFUpPkU3Y-5a9XIf8vHwLQfl5WLWyeMuP0QYA3Kgma1GVochxmDdn0CJPBYmN3IsTB4LkwSyDVm7GzWb_zh4G2TU3u60NT6jSZrB_x_wAzJ4dcA</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Navy, Patrice</creator><creator>Page, Vincent</creator><creator>Grandchamp, Enguerran</creator><creator>Desachy, Jacky</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1535-662X</orcidid></search><sort><creationdate>20060301</creationdate><title>Matching two clusters of points extracted from satellite images</title><author>Navy, Patrice ; Page, Vincent ; Grandchamp, Enguerran ; Desachy, Jacky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Clusters of points</topic><topic>Computer Science</topic><topic>Homography</topic><topic>Image matching</topic><topic>Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navy, Patrice</creatorcontrib><creatorcontrib>Page, Vincent</creatorcontrib><creatorcontrib>Grandchamp, Enguerran</creatorcontrib><creatorcontrib>Desachy, Jacky</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navy, Patrice</au><au>Page, Vincent</au><au>Grandchamp, Enguerran</au><au>Desachy, Jacky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching two clusters of points extracted from satellite images</atitle><jtitle>Pattern recognition letters</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>27</volume><issue>4</issue><spage>268</spage><epage>274</epage><pages>268-274</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2005.08.008</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1535-662X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2006-03, Vol.27 (4), p.268-274 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00602280v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Clusters of points Computer Science Homography Image matching Image Processing |
title | Matching two clusters of points extracted from satellite images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20two%20clusters%20of%20points%20extracted%20from%20satellite%20images&rft.jtitle=Pattern%20recognition%20letters&rft.au=Navy,%20Patrice&rft.date=2006-03-01&rft.volume=27&rft.issue=4&rft.spage=268&rft.epage=274&rft.pages=268-274&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2005.08.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00602280v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167865505002217&rfr_iscdi=true |