Matching two clusters of points extracted from satellite images

Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2006-03, Vol.27 (4), p.268-274
Hauptverfasser: Navy, Patrice, Page, Vincent, Grandchamp, Enguerran, Desachy, Jacky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 4
container_start_page 268
container_title Pattern recognition letters
container_volume 27
creator Navy, Patrice
Page, Vincent
Grandchamp, Enguerran
Desachy, Jacky
description Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler.
doi_str_mv 10.1016/j.patrec.2005.08.008
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00602280v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865505002217</els_id><sourcerecordid>oai_HAL_hal_00602280v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEOuHnbNx2529qKUolZY8aLnkOajTdl2SxKr_ntTVjx6Ghie5x3mReiakpISKm435V6lYHXJCKlLAiUhcIImFBpWNLyqTtEkY00Boq7P0UWMG0KI4C1M0P2LSnrtdyucPges-4-YbIh4cHg_-F2K2H6loHSyBrswbHFUyfa9Txb7rVrZeInOnOqjvfqdU_T--PA2XxTd69PzfNYVmoNIBWUAwrWmYVwA5YY5qpXjTlthdAuiMdBq4QQ0rTMVcM6XrYAlb5c1GFUpPkU3Y-5a9XIf8vHwLQfl5WLWyeMuP0QYA3Kgma1GVochxmDdn0CJPBYmN3IsTB4LkwSyDVm7GzWb_zh4G2TU3u60NT6jSZrB_x_wAzJ4dcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matching two clusters of points extracted from satellite images</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Navy, Patrice ; Page, Vincent ; Grandchamp, Enguerran ; Desachy, Jacky</creator><creatorcontrib>Navy, Patrice ; Page, Vincent ; Grandchamp, Enguerran ; Desachy, Jacky</creatorcontrib><description>Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2005.08.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Clusters of points ; Computer Science ; Homography ; Image matching ; Image Processing</subject><ispartof>Pattern recognition letters, 2006-03, Vol.27 (4), p.268-274</ispartof><rights>2005 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</citedby><cites>FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</cites><orcidid>0000-0002-1535-662X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2005.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00602280$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Navy, Patrice</creatorcontrib><creatorcontrib>Page, Vincent</creatorcontrib><creatorcontrib>Grandchamp, Enguerran</creatorcontrib><creatorcontrib>Desachy, Jacky</creatorcontrib><title>Matching two clusters of points extracted from satellite images</title><title>Pattern recognition letters</title><description>Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler.</description><subject>Clusters of points</subject><subject>Computer Science</subject><subject>Homography</subject><subject>Image matching</subject><subject>Image Processing</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEOuHnbNx2529qKUolZY8aLnkOajTdl2SxKr_ntTVjx6Ghie5x3mReiakpISKm435V6lYHXJCKlLAiUhcIImFBpWNLyqTtEkY00Boq7P0UWMG0KI4C1M0P2LSnrtdyucPges-4-YbIh4cHg_-F2K2H6loHSyBrswbHFUyfa9Txb7rVrZeInOnOqjvfqdU_T--PA2XxTd69PzfNYVmoNIBWUAwrWmYVwA5YY5qpXjTlthdAuiMdBq4QQ0rTMVcM6XrYAlb5c1GFUpPkU3Y-5a9XIf8vHwLQfl5WLWyeMuP0QYA3Kgma1GVochxmDdn0CJPBYmN3IsTB4LkwSyDVm7GzWb_zh4G2TU3u60NT6jSZrB_x_wAzJ4dcA</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Navy, Patrice</creator><creator>Page, Vincent</creator><creator>Grandchamp, Enguerran</creator><creator>Desachy, Jacky</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1535-662X</orcidid></search><sort><creationdate>20060301</creationdate><title>Matching two clusters of points extracted from satellite images</title><author>Navy, Patrice ; Page, Vincent ; Grandchamp, Enguerran ; Desachy, Jacky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-12886f9d7236813d2f1caf3fce6dc9867d89c6f6879fd48333b968b39b58da4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Clusters of points</topic><topic>Computer Science</topic><topic>Homography</topic><topic>Image matching</topic><topic>Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navy, Patrice</creatorcontrib><creatorcontrib>Page, Vincent</creatorcontrib><creatorcontrib>Grandchamp, Enguerran</creatorcontrib><creatorcontrib>Desachy, Jacky</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navy, Patrice</au><au>Page, Vincent</au><au>Grandchamp, Enguerran</au><au>Desachy, Jacky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching two clusters of points extracted from satellite images</atitle><jtitle>Pattern recognition letters</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>27</volume><issue>4</issue><spage>268</spage><epage>274</epage><pages>268-274</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view. Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the corresponding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approximated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most natural way, we show that in this case the cost function has “chaotic” variations, so we need a complex technique for the minimization. To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homography from these “physical parameters” and show that the topography of the cost function gets smoother. Thus the minimization process gets simpler.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2005.08.008</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1535-662X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2006-03, Vol.27 (4), p.268-274
issn 0167-8655
1872-7344
language eng
recordid cdi_hal_primary_oai_HAL_hal_00602280v1
source ScienceDirect Journals (5 years ago - present)
subjects Clusters of points
Computer Science
Homography
Image matching
Image Processing
title Matching two clusters of points extracted from satellite images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20two%20clusters%20of%20points%20extracted%20from%20satellite%20images&rft.jtitle=Pattern%20recognition%20letters&rft.au=Navy,%20Patrice&rft.date=2006-03-01&rft.volume=27&rft.issue=4&rft.spage=268&rft.epage=274&rft.pages=268-274&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2005.08.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00602280v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167865505002217&rfr_iscdi=true