Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape
An experimental device for textile composite reinforcement forming is presented. A strongly double curved tetrahedral shape is formed by punch and die. This shape is those of the corner fitting parts used as corner brackets. The device shows that is possible to obtain such geometry by punch and die...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2011, Vol.42 (6), p.612-622 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 622 |
---|---|
container_issue | 6 |
container_start_page | 612 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 42 |
creator | Allaoui, S. Boisse, P. Chatel, S. Hamila, N. Hivet, G. Soulat, D. Vidal-Salle, E. |
description | An experimental device for textile composite reinforcement forming is presented. A strongly double curved tetrahedral shape is formed by punch and die. This shape is those of the corner fitting parts used as corner brackets. The device shows that is possible to obtain such geometry by punch and die forming thanks to strong blank holder loads and an appropriate reinforcement. There is no wrinkle in the tetrahedral part of the formed shape but the six blank holders create wrinkles in the plane part of the preform. The shear angles reach 60° but there is no wrinkling in this zone. The presented forming process enables the experimental validation of a semi-discrete simulation approach. It is shown that shear angles and wrinkle shapes obtained by this numerical approach are in good agreement with the forming experiment. The computation of the shape of wrinkles after forming is necessary to check that these wrinkles do not expand to the useful part of the preform. This needs to take the bending stiffnesses into account. This is not the case when the simulation is based on a membrane approach. |
doi_str_mv | 10.1016/j.compositesa.2011.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00601863v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X11000443</els_id><sourcerecordid>869843765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-8dee91cac1fbdc9df1299be0a16854a541e315f2a2c31e165034a0452a9279fe3</originalsourceid><addsrcrecordid>eNqNkEtv1TAQhSMEEqXwGwgLhFgkzNhx4iyrq0KRrsQCKiGxsKbOuNdXeWHnVu2_xyFVxZLVPPTNOfbJsncIJQLWn46lnYZ5in7hSKUAxBJECYDPsjPUjS6UruB56qVqCy3Vz5fZqxiPACBli2fZr8v7mYMfeFyoz2ns8vE0pIX9O1H_EDnmk8sXvl98z3lgP7opWF4v8tQNfrxdAUrIEujAXUin8UAzv85eOOojv3ms59n158sfu6ti_-3L193FvrBVhUuhO-YWLVl0N51tO4eibW8YCGutKlIVskTlBAkrkbFWICuCSglqRdM6lufZx033QL2Z02coPJiJvLm62Jt1B1AD6lreYWI_bOwcpt8njosZfLTc9zTydIpG162uZFOrRLYbacMUY2D3JI1g1uzN0fyTvVmzNyCS2ery_tGFYkrSBRqtj08CogINTV0n7u3GOZoM3YbEXH9PQgpAoNKiScRuIzgFeOc5mGg9j5Y7H9guppv8f7znDy5Lqkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869843765</pqid></control><display><type>article</type><title>Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape</title><source>Access via ScienceDirect (Elsevier)</source><creator>Allaoui, S. ; Boisse, P. ; Chatel, S. ; Hamila, N. ; Hivet, G. ; Soulat, D. ; Vidal-Salle, E.</creator><creatorcontrib>Allaoui, S. ; Boisse, P. ; Chatel, S. ; Hamila, N. ; Hivet, G. ; Soulat, D. ; Vidal-Salle, E.</creatorcontrib><description>An experimental device for textile composite reinforcement forming is presented. A strongly double curved tetrahedral shape is formed by punch and die. This shape is those of the corner fitting parts used as corner brackets. The device shows that is possible to obtain such geometry by punch and die forming thanks to strong blank holder loads and an appropriate reinforcement. There is no wrinkle in the tetrahedral part of the formed shape but the six blank holders create wrinkles in the plane part of the preform. The shear angles reach 60° but there is no wrinkling in this zone. The presented forming process enables the experimental validation of a semi-discrete simulation approach. It is shown that shear angles and wrinkle shapes obtained by this numerical approach are in good agreement with the forming experiment. The computation of the shape of wrinkles after forming is necessary to check that these wrinkles do not expand to the useful part of the preform. This needs to take the bending stiffnesses into account. This is not the case when the simulation is based on a membrane approach.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2011.02.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Fabrics/textiles ; Angles (geometry) ; Applied sciences ; bending strength ; Blanks ; C. Finite element analysis ; Computer simulation ; Devices ; E. Forming ; E. Preform ; Engineering Sciences ; Exact sciences and technology ; fabrics ; Forming ; Forms of application and semi-finished materials ; Laminates ; Materials and structures in mechanics ; mathematical models ; mechanical stress ; Mechanics ; model validation ; Physics ; Polymer industry, paints, wood ; Preforms ; Punches ; Reinforcement ; shape ; Shear ; Technology of polymers</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2011, Vol.42 (6), p.612-622</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-8dee91cac1fbdc9df1299be0a16854a541e315f2a2c31e165034a0452a9279fe3</citedby><cites>FETCH-LOGICAL-c441t-8dee91cac1fbdc9df1299be0a16854a541e315f2a2c31e165034a0452a9279fe3</cites><orcidid>0000-0001-5930-3047 ; 0000-0001-9673-1016 ; 0000-0002-0294-7340 ; 0000-0003-4552-3238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2011.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24080766$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00601863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Allaoui, S.</creatorcontrib><creatorcontrib>Boisse, P.</creatorcontrib><creatorcontrib>Chatel, S.</creatorcontrib><creatorcontrib>Hamila, N.</creatorcontrib><creatorcontrib>Hivet, G.</creatorcontrib><creatorcontrib>Soulat, D.</creatorcontrib><creatorcontrib>Vidal-Salle, E.</creatorcontrib><title>Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape</title><title>Composites. Part A, Applied science and manufacturing</title><description>An experimental device for textile composite reinforcement forming is presented. A strongly double curved tetrahedral shape is formed by punch and die. This shape is those of the corner fitting parts used as corner brackets. The device shows that is possible to obtain such geometry by punch and die forming thanks to strong blank holder loads and an appropriate reinforcement. There is no wrinkle in the tetrahedral part of the formed shape but the six blank holders create wrinkles in the plane part of the preform. The shear angles reach 60° but there is no wrinkling in this zone. The presented forming process enables the experimental validation of a semi-discrete simulation approach. It is shown that shear angles and wrinkle shapes obtained by this numerical approach are in good agreement with the forming experiment. The computation of the shape of wrinkles after forming is necessary to check that these wrinkles do not expand to the useful part of the preform. This needs to take the bending stiffnesses into account. This is not the case when the simulation is based on a membrane approach.</description><subject>A. Fabrics/textiles</subject><subject>Angles (geometry)</subject><subject>Applied sciences</subject><subject>bending strength</subject><subject>Blanks</subject><subject>C. Finite element analysis</subject><subject>Computer simulation</subject><subject>Devices</subject><subject>E. Forming</subject><subject>E. Preform</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>fabrics</subject><subject>Forming</subject><subject>Forms of application and semi-finished materials</subject><subject>Laminates</subject><subject>Materials and structures in mechanics</subject><subject>mathematical models</subject><subject>mechanical stress</subject><subject>Mechanics</subject><subject>model validation</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Preforms</subject><subject>Punches</subject><subject>Reinforcement</subject><subject>shape</subject><subject>Shear</subject><subject>Technology of polymers</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1TAQhSMEEqXwGwgLhFgkzNhx4iyrq0KRrsQCKiGxsKbOuNdXeWHnVu2_xyFVxZLVPPTNOfbJsncIJQLWn46lnYZ5in7hSKUAxBJECYDPsjPUjS6UruB56qVqCy3Vz5fZqxiPACBli2fZr8v7mYMfeFyoz2ns8vE0pIX9O1H_EDnmk8sXvl98z3lgP7opWF4v8tQNfrxdAUrIEujAXUin8UAzv85eOOojv3ms59n158sfu6ti_-3L193FvrBVhUuhO-YWLVl0N51tO4eibW8YCGutKlIVskTlBAkrkbFWICuCSglqRdM6lufZx033QL2Z02coPJiJvLm62Jt1B1AD6lreYWI_bOwcpt8njosZfLTc9zTydIpG162uZFOrRLYbacMUY2D3JI1g1uzN0fyTvVmzNyCS2ery_tGFYkrSBRqtj08CogINTV0n7u3GOZoM3YbEXH9PQgpAoNKiScRuIzgFeOc5mGg9j5Y7H9guppv8f7znDy5Lqkw</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Allaoui, S.</creator><creator>Boisse, P.</creator><creator>Chatel, S.</creator><creator>Hamila, N.</creator><creator>Hivet, G.</creator><creator>Soulat, D.</creator><creator>Vidal-Salle, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5930-3047</orcidid><orcidid>https://orcid.org/0000-0001-9673-1016</orcidid><orcidid>https://orcid.org/0000-0002-0294-7340</orcidid><orcidid>https://orcid.org/0000-0003-4552-3238</orcidid></search><sort><creationdate>2011</creationdate><title>Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape</title><author>Allaoui, S. ; Boisse, P. ; Chatel, S. ; Hamila, N. ; Hivet, G. ; Soulat, D. ; Vidal-Salle, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-8dee91cac1fbdc9df1299be0a16854a541e315f2a2c31e165034a0452a9279fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Fabrics/textiles</topic><topic>Angles (geometry)</topic><topic>Applied sciences</topic><topic>bending strength</topic><topic>Blanks</topic><topic>C. Finite element analysis</topic><topic>Computer simulation</topic><topic>Devices</topic><topic>E. Forming</topic><topic>E. Preform</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>fabrics</topic><topic>Forming</topic><topic>Forms of application and semi-finished materials</topic><topic>Laminates</topic><topic>Materials and structures in mechanics</topic><topic>mathematical models</topic><topic>mechanical stress</topic><topic>Mechanics</topic><topic>model validation</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Preforms</topic><topic>Punches</topic><topic>Reinforcement</topic><topic>shape</topic><topic>Shear</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allaoui, S.</creatorcontrib><creatorcontrib>Boisse, P.</creatorcontrib><creatorcontrib>Chatel, S.</creatorcontrib><creatorcontrib>Hamila, N.</creatorcontrib><creatorcontrib>Hivet, G.</creatorcontrib><creatorcontrib>Soulat, D.</creatorcontrib><creatorcontrib>Vidal-Salle, E.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allaoui, S.</au><au>Boisse, P.</au><au>Chatel, S.</au><au>Hamila, N.</au><au>Hivet, G.</au><au>Soulat, D.</au><au>Vidal-Salle, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2011</date><risdate>2011</risdate><volume>42</volume><issue>6</issue><spage>612</spage><epage>622</epage><pages>612-622</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>An experimental device for textile composite reinforcement forming is presented. A strongly double curved tetrahedral shape is formed by punch and die. This shape is those of the corner fitting parts used as corner brackets. The device shows that is possible to obtain such geometry by punch and die forming thanks to strong blank holder loads and an appropriate reinforcement. There is no wrinkle in the tetrahedral part of the formed shape but the six blank holders create wrinkles in the plane part of the preform. The shear angles reach 60° but there is no wrinkling in this zone. The presented forming process enables the experimental validation of a semi-discrete simulation approach. It is shown that shear angles and wrinkle shapes obtained by this numerical approach are in good agreement with the forming experiment. The computation of the shape of wrinkles after forming is necessary to check that these wrinkles do not expand to the useful part of the preform. This needs to take the bending stiffnesses into account. This is not the case when the simulation is based on a membrane approach.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2011.02.001</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5930-3047</orcidid><orcidid>https://orcid.org/0000-0001-9673-1016</orcidid><orcidid>https://orcid.org/0000-0002-0294-7340</orcidid><orcidid>https://orcid.org/0000-0003-4552-3238</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2011, Vol.42 (6), p.612-622 |
issn | 1359-835X 1878-5840 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00601863v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | A. Fabrics/textiles Angles (geometry) Applied sciences bending strength Blanks C. Finite element analysis Computer simulation Devices E. Forming E. Preform Engineering Sciences Exact sciences and technology fabrics Forming Forms of application and semi-finished materials Laminates Materials and structures in mechanics mathematical models mechanical stress Mechanics model validation Physics Polymer industry, paints, wood Preforms Punches Reinforcement shape Shear Technology of polymers |
title | Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20analyses%20of%20textile%20reinforcement%20forming%20of%20a%20tetrahedral%20shape&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Allaoui,%20S.&rft.date=2011&rft.volume=42&rft.issue=6&rft.spage=612&rft.epage=622&rft.pages=612-622&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2011.02.001&rft_dat=%3Cproquest_hal_p%3E869843765%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869843765&rft_id=info:pmid/&rft_els_id=S1359835X11000443&rfr_iscdi=true |