Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization

Cellulose acetate is a very good film-forming polymer with major applications in cigarette filters, photographic films, cosmetics and pharmaceutics formulations and membrane separation processes. Nevertheless, its rigidity and relative hydrophobic character can be limiting drawbacks for some applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2010-05, Vol.46 (5), p.944-957
Hauptverfasser: Billy, M., Da Costa, A. Ranzani, Lochon, P., Clément, R., Dresch, M., Etienne, S., Hiver, J.M., David, L., Jonquières, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 957
container_issue 5
container_start_page 944
container_title European polymer journal
container_volume 46
creator Billy, M.
Da Costa, A. Ranzani
Lochon, P.
Clément, R.
Dresch, M.
Etienne, S.
Hiver, J.M.
David, L.
Jonquières, A.
description Cellulose acetate is a very good film-forming polymer with major applications in cigarette filters, photographic films, cosmetics and pharmaceutics formulations and membrane separation processes. Nevertheless, its rigidity and relative hydrophobic character can be limiting drawbacks for some applications. In this work, new cellulose acetate materials with highly flexible and hydrophilic grafts were obtained with different hydrophilic/hydrophobic balances. Cellulose acetate was grafted with methyl diethylene glycol methacrylate (MDEGMA) from brominated macroinitiators by atom transfer radical polymerization (ATRP) in two steps. The first step consisted of introducing ATRP initiator groups on cellulose acetate by reacting hydroxyl side groups with 2-bromoisobutyryl bromide. A preliminary study was then carried out to determine the experimental conditions for the controlled ATRP of MDEGMA homopolymerization in a solvent (cyclopentanone) compatible with cellulose acetate grafting. In these conditions, the MDEGMA homopolymerization followed Hanns Fischer’s kinetics model accounting for the radical persistent effect. The ATRP grafting was then investigated for two cellulose acetate macroinitiators differing in the number of their ATRP initiator groups. Two families of graft copolymers with nano-structured architectures were obtained. The first family corresponded to copolymers with a high number of short grafts. The copolymers of the second family had almost the same graft weight fractions but a small number of long grafts. The morphology of the graft copolymers was then investigated by synchrotron X-ray scattering. The most informative results showed that the phase segregation depended upon the number and length of the poly(MDEGMA) grafts. The copolymer with 44 wt.% of long grafts showed a segregated morphology of nano-domains with sharp interfaces and a radius of gyration of 11.5 nm (from Guinier’s law). These cellulose acetate copolymers eventually led to strong films with potential applications in membrane separations.
doi_str_mv 10.1016/j.eurpolymj.2010.01.021
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00598531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305710000510</els_id><sourcerecordid>oai_HAL_hal_00598531v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c468320ec58f490004d82041a774cf34c788dde00faaa99ec1080bec5f8c04903</originalsourceid><addsrcrecordid>eNqFkMFuEzEQhi1EJULLM-ALBw4bxmtv7OUWRZQiReoBOFvD7CzraLsb2U5R-vR1GpRrTyOP_m9m_AnxUcFSgVp92S35EPfzeHzYLWsoXVBLqNUbsVDO6kq1pnkrFgDKVBoa-068T2kHAFav9ELwhsfxMM6JJRJnzCz_RuyzpPllJsck_4U8yAmnuUo5HigfIncSIw0h88srfZU_j1MeOIUkceokDRiRMsfwhDnM04246nFM_OF_vRa_b7_92txV2_vvPzbrbUXatrkis3K6BqbG9aYtN5rO1WAUWmuo14asc13HAD0iti2TAgd_Srx3BAXQ1-Lzee6Ao9_H8IDx6GcM_m699aceQNO6RqtHVbL2nKU4pxS5vwAK_Mms3_mLWX8y60H5YraQn87kHhPh2EecKKQLXtfWGAOrklufc1y-_Bg4-kSBJ-IuxCLOd3N4ddczoSuVgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization</title><source>Elsevier ScienceDirect Journals</source><creator>Billy, M. ; Da Costa, A. Ranzani ; Lochon, P. ; Clément, R. ; Dresch, M. ; Etienne, S. ; Hiver, J.M. ; David, L. ; Jonquières, A.</creator><creatorcontrib>Billy, M. ; Da Costa, A. Ranzani ; Lochon, P. ; Clément, R. ; Dresch, M. ; Etienne, S. ; Hiver, J.M. ; David, L. ; Jonquières, A.</creatorcontrib><description>Cellulose acetate is a very good film-forming polymer with major applications in cigarette filters, photographic films, cosmetics and pharmaceutics formulations and membrane separation processes. Nevertheless, its rigidity and relative hydrophobic character can be limiting drawbacks for some applications. In this work, new cellulose acetate materials with highly flexible and hydrophilic grafts were obtained with different hydrophilic/hydrophobic balances. Cellulose acetate was grafted with methyl diethylene glycol methacrylate (MDEGMA) from brominated macroinitiators by atom transfer radical polymerization (ATRP) in two steps. The first step consisted of introducing ATRP initiator groups on cellulose acetate by reacting hydroxyl side groups with 2-bromoisobutyryl bromide. A preliminary study was then carried out to determine the experimental conditions for the controlled ATRP of MDEGMA homopolymerization in a solvent (cyclopentanone) compatible with cellulose acetate grafting. In these conditions, the MDEGMA homopolymerization followed Hanns Fischer’s kinetics model accounting for the radical persistent effect. The ATRP grafting was then investigated for two cellulose acetate macroinitiators differing in the number of their ATRP initiator groups. Two families of graft copolymers with nano-structured architectures were obtained. The first family corresponded to copolymers with a high number of short grafts. The copolymers of the second family had almost the same graft weight fractions but a small number of long grafts. The morphology of the graft copolymers was then investigated by synchrotron X-ray scattering. The most informative results showed that the phase segregation depended upon the number and length of the poly(MDEGMA) grafts. The copolymer with 44 wt.% of long grafts showed a segregated morphology of nano-domains with sharp interfaces and a radius of gyration of 11.5 nm (from Guinier’s law). These cellulose acetate copolymers eventually led to strong films with potential applications in membrane separations.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2010.01.021</identifier><identifier>CODEN: EUPJAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Atom transfer radical polymerization ; Cellulose and derivatives ; Chemical Sciences ; Controlled free radical polymerization ; Copolymer morphology ; Exact sciences and technology ; Grafting ; Material chemistry ; Natural polymers ; Physicochemistry of polymers ; Polymers</subject><ispartof>European polymer journal, 2010-05, Vol.46 (5), p.944-957</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c468320ec58f490004d82041a774cf34c788dde00faaa99ec1080bec5f8c04903</citedby><cites>FETCH-LOGICAL-c379t-c468320ec58f490004d82041a774cf34c788dde00faaa99ec1080bec5f8c04903</cites><orcidid>0000-0002-2842-4193 ; 0000-0003-3632-8537 ; 0000-0003-4079-0695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014305710000510$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22744406$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00598531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Billy, M.</creatorcontrib><creatorcontrib>Da Costa, A. Ranzani</creatorcontrib><creatorcontrib>Lochon, P.</creatorcontrib><creatorcontrib>Clément, R.</creatorcontrib><creatorcontrib>Dresch, M.</creatorcontrib><creatorcontrib>Etienne, S.</creatorcontrib><creatorcontrib>Hiver, J.M.</creatorcontrib><creatorcontrib>David, L.</creatorcontrib><creatorcontrib>Jonquières, A.</creatorcontrib><title>Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization</title><title>European polymer journal</title><description>Cellulose acetate is a very good film-forming polymer with major applications in cigarette filters, photographic films, cosmetics and pharmaceutics formulations and membrane separation processes. Nevertheless, its rigidity and relative hydrophobic character can be limiting drawbacks for some applications. In this work, new cellulose acetate materials with highly flexible and hydrophilic grafts were obtained with different hydrophilic/hydrophobic balances. Cellulose acetate was grafted with methyl diethylene glycol methacrylate (MDEGMA) from brominated macroinitiators by atom transfer radical polymerization (ATRP) in two steps. The first step consisted of introducing ATRP initiator groups on cellulose acetate by reacting hydroxyl side groups with 2-bromoisobutyryl bromide. A preliminary study was then carried out to determine the experimental conditions for the controlled ATRP of MDEGMA homopolymerization in a solvent (cyclopentanone) compatible with cellulose acetate grafting. In these conditions, the MDEGMA homopolymerization followed Hanns Fischer’s kinetics model accounting for the radical persistent effect. The ATRP grafting was then investigated for two cellulose acetate macroinitiators differing in the number of their ATRP initiator groups. Two families of graft copolymers with nano-structured architectures were obtained. The first family corresponded to copolymers with a high number of short grafts. The copolymers of the second family had almost the same graft weight fractions but a small number of long grafts. The morphology of the graft copolymers was then investigated by synchrotron X-ray scattering. The most informative results showed that the phase segregation depended upon the number and length of the poly(MDEGMA) grafts. The copolymer with 44 wt.% of long grafts showed a segregated morphology of nano-domains with sharp interfaces and a radius of gyration of 11.5 nm (from Guinier’s law). These cellulose acetate copolymers eventually led to strong films with potential applications in membrane separations.</description><subject>Applied sciences</subject><subject>Atom transfer radical polymerization</subject><subject>Cellulose and derivatives</subject><subject>Chemical Sciences</subject><subject>Controlled free radical polymerization</subject><subject>Copolymer morphology</subject><subject>Exact sciences and technology</subject><subject>Grafting</subject><subject>Material chemistry</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMFuEzEQhi1EJULLM-ALBw4bxmtv7OUWRZQiReoBOFvD7CzraLsb2U5R-vR1GpRrTyOP_m9m_AnxUcFSgVp92S35EPfzeHzYLWsoXVBLqNUbsVDO6kq1pnkrFgDKVBoa-068T2kHAFav9ELwhsfxMM6JJRJnzCz_RuyzpPllJsck_4U8yAmnuUo5HigfIncSIw0h88srfZU_j1MeOIUkceokDRiRMsfwhDnM04246nFM_OF_vRa_b7_92txV2_vvPzbrbUXatrkis3K6BqbG9aYtN5rO1WAUWmuo14asc13HAD0iti2TAgd_Srx3BAXQ1-Lzee6Ao9_H8IDx6GcM_m699aceQNO6RqtHVbL2nKU4pxS5vwAK_Mms3_mLWX8y60H5YraQn87kHhPh2EecKKQLXtfWGAOrklufc1y-_Bg4-kSBJ-IuxCLOd3N4ddczoSuVgQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Billy, M.</creator><creator>Da Costa, A. Ranzani</creator><creator>Lochon, P.</creator><creator>Clément, R.</creator><creator>Dresch, M.</creator><creator>Etienne, S.</creator><creator>Hiver, J.M.</creator><creator>David, L.</creator><creator>Jonquières, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2842-4193</orcidid><orcidid>https://orcid.org/0000-0003-3632-8537</orcidid><orcidid>https://orcid.org/0000-0003-4079-0695</orcidid></search><sort><creationdate>20100501</creationdate><title>Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization</title><author>Billy, M. ; Da Costa, A. Ranzani ; Lochon, P. ; Clément, R. ; Dresch, M. ; Etienne, S. ; Hiver, J.M. ; David, L. ; Jonquières, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c468320ec58f490004d82041a774cf34c788dde00faaa99ec1080bec5f8c04903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Atom transfer radical polymerization</topic><topic>Cellulose and derivatives</topic><topic>Chemical Sciences</topic><topic>Controlled free radical polymerization</topic><topic>Copolymer morphology</topic><topic>Exact sciences and technology</topic><topic>Grafting</topic><topic>Material chemistry</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billy, M.</creatorcontrib><creatorcontrib>Da Costa, A. Ranzani</creatorcontrib><creatorcontrib>Lochon, P.</creatorcontrib><creatorcontrib>Clément, R.</creatorcontrib><creatorcontrib>Dresch, M.</creatorcontrib><creatorcontrib>Etienne, S.</creatorcontrib><creatorcontrib>Hiver, J.M.</creatorcontrib><creatorcontrib>David, L.</creatorcontrib><creatorcontrib>Jonquières, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billy, M.</au><au>Da Costa, A. Ranzani</au><au>Lochon, P.</au><au>Clément, R.</au><au>Dresch, M.</au><au>Etienne, S.</au><au>Hiver, J.M.</au><au>David, L.</au><au>Jonquières, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization</atitle><jtitle>European polymer journal</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>46</volume><issue>5</issue><spage>944</spage><epage>957</epage><pages>944-957</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><coden>EUPJAG</coden><abstract>Cellulose acetate is a very good film-forming polymer with major applications in cigarette filters, photographic films, cosmetics and pharmaceutics formulations and membrane separation processes. Nevertheless, its rigidity and relative hydrophobic character can be limiting drawbacks for some applications. In this work, new cellulose acetate materials with highly flexible and hydrophilic grafts were obtained with different hydrophilic/hydrophobic balances. Cellulose acetate was grafted with methyl diethylene glycol methacrylate (MDEGMA) from brominated macroinitiators by atom transfer radical polymerization (ATRP) in two steps. The first step consisted of introducing ATRP initiator groups on cellulose acetate by reacting hydroxyl side groups with 2-bromoisobutyryl bromide. A preliminary study was then carried out to determine the experimental conditions for the controlled ATRP of MDEGMA homopolymerization in a solvent (cyclopentanone) compatible with cellulose acetate grafting. In these conditions, the MDEGMA homopolymerization followed Hanns Fischer’s kinetics model accounting for the radical persistent effect. The ATRP grafting was then investigated for two cellulose acetate macroinitiators differing in the number of their ATRP initiator groups. Two families of graft copolymers with nano-structured architectures were obtained. The first family corresponded to copolymers with a high number of short grafts. The copolymers of the second family had almost the same graft weight fractions but a small number of long grafts. The morphology of the graft copolymers was then investigated by synchrotron X-ray scattering. The most informative results showed that the phase segregation depended upon the number and length of the poly(MDEGMA) grafts. The copolymer with 44 wt.% of long grafts showed a segregated morphology of nano-domains with sharp interfaces and a radius of gyration of 11.5 nm (from Guinier’s law). These cellulose acetate copolymers eventually led to strong films with potential applications in membrane separations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2010.01.021</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2842-4193</orcidid><orcidid>https://orcid.org/0000-0003-3632-8537</orcidid><orcidid>https://orcid.org/0000-0003-4079-0695</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2010-05, Vol.46 (5), p.944-957
issn 0014-3057
1873-1945
language eng
recordid cdi_hal_primary_oai_HAL_hal_00598531v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Atom transfer radical polymerization
Cellulose and derivatives
Chemical Sciences
Controlled free radical polymerization
Copolymer morphology
Exact sciences and technology
Grafting
Material chemistry
Natural polymers
Physicochemistry of polymers
Polymers
title Cellulose acetate graft copolymers with nano-structured architectures: Synthesis and characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose%20acetate%20graft%20copolymers%20with%20nano-structured%20architectures:%20Synthesis%20and%20characterization&rft.jtitle=European%20polymer%20journal&rft.au=Billy,%20M.&rft.date=2010-05-01&rft.volume=46&rft.issue=5&rft.spage=944&rft.epage=957&rft.pages=944-957&rft.issn=0014-3057&rft.eissn=1873-1945&rft.coden=EUPJAG&rft_id=info:doi/10.1016/j.eurpolymj.2010.01.021&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00598531v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0014305710000510&rfr_iscdi=true