Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage

The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2012-04, Vol.298, p.92-106
Hauptverfasser: Fischer, S., Kurbatova, P., Bessonov, N., Gandrillon, O., Volpert, V., Crauste, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue
container_start_page 92
container_title Journal of theoretical biology
container_volume 298
creator Fischer, S.
Kurbatova, P.
Bessonov, N.
Gandrillon, O.
Volpert, V.
Crauste, F.
description The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis. ► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis.
doi_str_mv 10.1016/j.jtbi.2012.01.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00596682v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519312000033</els_id><sourcerecordid>923576054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhD3AA3xCHBH9mY9RLVQFFWsQB9mw59mTjVRIvtrfS_nscpfTIXCyNn3nn40XoLSU1JbT5dKyPufM1I5TVhNaEsGdoQ4mSVSsFfY42JcMqSRW_Qq9SOhJClODNS3TFGBOyYWyDuh_BwejnA4Z4yUMM3WhS9hb7NJrZpc94n5Zfg4dLF73D08LjHLBJCVLCeQDcn2ebfZhx6LGFOUcz4snYGE6DOcBr9KI3Y4I3j-812n_98vvuvtr9_Pb97nZXWSG3uRKcggNpewJctM4KY1lHbdco0opWcQslulZyqTgTfSOd2nJrJenA9UwRfo0-rrqDGfUp-snEiw7G6_vbnV5yhEjVNC17YIX9sLKnGP6cIWU9-WRhLDtDOCetGJfbhkhRSLaSZZ2UIvRP0pToxQZ91IsNerFBE1q6LPLvHuXP3QTuqeTf3QvwfgV6E7Q5RJ_0_ldRkMWj0pkvxM1KQDnZg4eok_UwW3A-gs3aBf-_Cf4CezeiaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923576054</pqid></control><display><type>article</type><title>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Fischer, S. ; Kurbatova, P. ; Bessonov, N. ; Gandrillon, O. ; Volpert, V. ; Crauste, F.</creator><creatorcontrib>Fischer, S. ; Kurbatova, P. ; Bessonov, N. ; Gandrillon, O. ; Volpert, V. ; Crauste, F.</creatorcontrib><description>The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis. ► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2012.01.002</identifier><identifier>PMID: 22245622</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>apoptosis ; Biochemistry, Molecular Biology ; blood flow ; bone marrow ; Bone Marrow Cells ; Bone Marrow Cells - physiology ; Cell Communication ; Cell Communication - physiology ; cell cycle ; cytokines ; death ; equations ; Erythroblastic island ; Erythroblasts ; Erythroblasts - physiology ; erythrocytes ; Erythropoiesis ; Erythropoiesis - physiology ; Feedback, Physiological ; Feedback, Physiological - physiology ; Humans ; Hybrid model ; Life Sciences ; Macrophage ; Macrophages ; Macrophages - physiology ; mitotic spindle apparatus ; Models, Biological ; proteins</subject><ispartof>Journal of theoretical biology, 2012-04, Vol.298, p.92-106</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</citedby><cites>FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</cites><orcidid>0000-0002-9979-9638 ; 0000-0002-3676-6513 ; 0000-0002-5323-9934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519312000033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22245622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00596682$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, S.</creatorcontrib><creatorcontrib>Kurbatova, P.</creatorcontrib><creatorcontrib>Bessonov, N.</creatorcontrib><creatorcontrib>Gandrillon, O.</creatorcontrib><creatorcontrib>Volpert, V.</creatorcontrib><creatorcontrib>Crauste, F.</creatorcontrib><title>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis. ► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis.</description><subject>apoptosis</subject><subject>Biochemistry, Molecular Biology</subject><subject>blood flow</subject><subject>bone marrow</subject><subject>Bone Marrow Cells</subject><subject>Bone Marrow Cells - physiology</subject><subject>Cell Communication</subject><subject>Cell Communication - physiology</subject><subject>cell cycle</subject><subject>cytokines</subject><subject>death</subject><subject>equations</subject><subject>Erythroblastic island</subject><subject>Erythroblasts</subject><subject>Erythroblasts - physiology</subject><subject>erythrocytes</subject><subject>Erythropoiesis</subject><subject>Erythropoiesis - physiology</subject><subject>Feedback, Physiological</subject><subject>Feedback, Physiological - physiology</subject><subject>Humans</subject><subject>Hybrid model</subject><subject>Life Sciences</subject><subject>Macrophage</subject><subject>Macrophages</subject><subject>Macrophages - physiology</subject><subject>mitotic spindle apparatus</subject><subject>Models, Biological</subject><subject>proteins</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhD3AA3xCHBH9mY9RLVQFFWsQB9mw59mTjVRIvtrfS_nscpfTIXCyNn3nn40XoLSU1JbT5dKyPufM1I5TVhNaEsGdoQ4mSVSsFfY42JcMqSRW_Qq9SOhJClODNS3TFGBOyYWyDuh_BwejnA4Z4yUMM3WhS9hb7NJrZpc94n5Zfg4dLF73D08LjHLBJCVLCeQDcn2ebfZhx6LGFOUcz4snYGE6DOcBr9KI3Y4I3j-812n_98vvuvtr9_Pb97nZXWSG3uRKcggNpewJctM4KY1lHbdco0opWcQslulZyqTgTfSOd2nJrJenA9UwRfo0-rrqDGfUp-snEiw7G6_vbnV5yhEjVNC17YIX9sLKnGP6cIWU9-WRhLDtDOCetGJfbhkhRSLaSZZ2UIvRP0pToxQZ91IsNerFBE1q6LPLvHuXP3QTuqeTf3QvwfgV6E7Q5RJ_0_ldRkMWj0pkvxM1KQDnZg4eok_UwW3A-gs3aBf-_Cf4CezeiaQ</recordid><startdate>20120407</startdate><enddate>20120407</enddate><creator>Fischer, S.</creator><creator>Kurbatova, P.</creator><creator>Bessonov, N.</creator><creator>Gandrillon, O.</creator><creator>Volpert, V.</creator><creator>Crauste, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9979-9638</orcidid><orcidid>https://orcid.org/0000-0002-3676-6513</orcidid><orcidid>https://orcid.org/0000-0002-5323-9934</orcidid></search><sort><creationdate>20120407</creationdate><title>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</title><author>Fischer, S. ; Kurbatova, P. ; Bessonov, N. ; Gandrillon, O. ; Volpert, V. ; Crauste, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>apoptosis</topic><topic>Biochemistry, Molecular Biology</topic><topic>blood flow</topic><topic>bone marrow</topic><topic>Bone Marrow Cells</topic><topic>Bone Marrow Cells - physiology</topic><topic>Cell Communication</topic><topic>Cell Communication - physiology</topic><topic>cell cycle</topic><topic>cytokines</topic><topic>death</topic><topic>equations</topic><topic>Erythroblastic island</topic><topic>Erythroblasts</topic><topic>Erythroblasts - physiology</topic><topic>erythrocytes</topic><topic>Erythropoiesis</topic><topic>Erythropoiesis - physiology</topic><topic>Feedback, Physiological</topic><topic>Feedback, Physiological - physiology</topic><topic>Humans</topic><topic>Hybrid model</topic><topic>Life Sciences</topic><topic>Macrophage</topic><topic>Macrophages</topic><topic>Macrophages - physiology</topic><topic>mitotic spindle apparatus</topic><topic>Models, Biological</topic><topic>proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, S.</creatorcontrib><creatorcontrib>Kurbatova, P.</creatorcontrib><creatorcontrib>Bessonov, N.</creatorcontrib><creatorcontrib>Gandrillon, O.</creatorcontrib><creatorcontrib>Volpert, V.</creatorcontrib><creatorcontrib>Crauste, F.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, S.</au><au>Kurbatova, P.</au><au>Bessonov, N.</au><au>Gandrillon, O.</au><au>Volpert, V.</au><au>Crauste, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2012-04-07</date><risdate>2012</risdate><volume>298</volume><spage>92</spage><epage>106</epage><pages>92-106</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis. ► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22245622</pmid><doi>10.1016/j.jtbi.2012.01.002</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9979-9638</orcidid><orcidid>https://orcid.org/0000-0002-3676-6513</orcidid><orcidid>https://orcid.org/0000-0002-5323-9934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2012-04, Vol.298, p.92-106
issn 0022-5193
1095-8541
language eng
recordid cdi_hal_primary_oai_HAL_hal_00596682v2
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects apoptosis
Biochemistry, Molecular Biology
blood flow
bone marrow
Bone Marrow Cells
Bone Marrow Cells - physiology
Cell Communication
Cell Communication - physiology
cell cycle
cytokines
death
equations
Erythroblastic island
Erythroblasts
Erythroblasts - physiology
erythrocytes
Erythropoiesis
Erythropoiesis - physiology
Feedback, Physiological
Feedback, Physiological - physiology
Humans
Hybrid model
Life Sciences
Macrophage
Macrophages
Macrophages - physiology
mitotic spindle apparatus
Models, Biological
proteins
title Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20erythroblastic%20islands:%20Using%20a%20hybrid%20model%20to%20assess%20the%20function%20of%20central%20macrophage&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Fischer,%20S.&rft.date=2012-04-07&rft.volume=298&rft.spage=92&rft.epage=106&rft.pages=92-106&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2012.01.002&rft_dat=%3Cproquest_hal_p%3E923576054%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923576054&rft_id=info:pmid/22245622&rft_els_id=S0022519312000033&rfr_iscdi=true