Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage
The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immatu...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2012-04, Vol.298, p.92-106 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | Journal of theoretical biology |
container_volume | 298 |
creator | Fischer, S. Kurbatova, P. Bessonov, N. Gandrillon, O. Volpert, V. Crauste, F. |
description | The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis.
► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis. |
doi_str_mv | 10.1016/j.jtbi.2012.01.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00596682v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519312000033</els_id><sourcerecordid>923576054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhD3AA3xCHBH9mY9RLVQFFWsQB9mw59mTjVRIvtrfS_nscpfTIXCyNn3nn40XoLSU1JbT5dKyPufM1I5TVhNaEsGdoQ4mSVSsFfY42JcMqSRW_Qq9SOhJClODNS3TFGBOyYWyDuh_BwejnA4Z4yUMM3WhS9hb7NJrZpc94n5Zfg4dLF73D08LjHLBJCVLCeQDcn2ebfZhx6LGFOUcz4snYGE6DOcBr9KI3Y4I3j-812n_98vvuvtr9_Pb97nZXWSG3uRKcggNpewJctM4KY1lHbdco0opWcQslulZyqTgTfSOd2nJrJenA9UwRfo0-rrqDGfUp-snEiw7G6_vbnV5yhEjVNC17YIX9sLKnGP6cIWU9-WRhLDtDOCetGJfbhkhRSLaSZZ2UIvRP0pToxQZ91IsNerFBE1q6LPLvHuXP3QTuqeTf3QvwfgV6E7Q5RJ_0_ldRkMWj0pkvxM1KQDnZg4eok_UwW3A-gs3aBf-_Cf4CezeiaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923576054</pqid></control><display><type>article</type><title>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Fischer, S. ; Kurbatova, P. ; Bessonov, N. ; Gandrillon, O. ; Volpert, V. ; Crauste, F.</creator><creatorcontrib>Fischer, S. ; Kurbatova, P. ; Bessonov, N. ; Gandrillon, O. ; Volpert, V. ; Crauste, F.</creatorcontrib><description>The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis.
► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2012.01.002</identifier><identifier>PMID: 22245622</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>apoptosis ; Biochemistry, Molecular Biology ; blood flow ; bone marrow ; Bone Marrow Cells ; Bone Marrow Cells - physiology ; Cell Communication ; Cell Communication - physiology ; cell cycle ; cytokines ; death ; equations ; Erythroblastic island ; Erythroblasts ; Erythroblasts - physiology ; erythrocytes ; Erythropoiesis ; Erythropoiesis - physiology ; Feedback, Physiological ; Feedback, Physiological - physiology ; Humans ; Hybrid model ; Life Sciences ; Macrophage ; Macrophages ; Macrophages - physiology ; mitotic spindle apparatus ; Models, Biological ; proteins</subject><ispartof>Journal of theoretical biology, 2012-04, Vol.298, p.92-106</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</citedby><cites>FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</cites><orcidid>0000-0002-9979-9638 ; 0000-0002-3676-6513 ; 0000-0002-5323-9934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519312000033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22245622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00596682$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, S.</creatorcontrib><creatorcontrib>Kurbatova, P.</creatorcontrib><creatorcontrib>Bessonov, N.</creatorcontrib><creatorcontrib>Gandrillon, O.</creatorcontrib><creatorcontrib>Volpert, V.</creatorcontrib><creatorcontrib>Crauste, F.</creatorcontrib><title>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis.
► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis.</description><subject>apoptosis</subject><subject>Biochemistry, Molecular Biology</subject><subject>blood flow</subject><subject>bone marrow</subject><subject>Bone Marrow Cells</subject><subject>Bone Marrow Cells - physiology</subject><subject>Cell Communication</subject><subject>Cell Communication - physiology</subject><subject>cell cycle</subject><subject>cytokines</subject><subject>death</subject><subject>equations</subject><subject>Erythroblastic island</subject><subject>Erythroblasts</subject><subject>Erythroblasts - physiology</subject><subject>erythrocytes</subject><subject>Erythropoiesis</subject><subject>Erythropoiesis - physiology</subject><subject>Feedback, Physiological</subject><subject>Feedback, Physiological - physiology</subject><subject>Humans</subject><subject>Hybrid model</subject><subject>Life Sciences</subject><subject>Macrophage</subject><subject>Macrophages</subject><subject>Macrophages - physiology</subject><subject>mitotic spindle apparatus</subject><subject>Models, Biological</subject><subject>proteins</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhD3AA3xCHBH9mY9RLVQFFWsQB9mw59mTjVRIvtrfS_nscpfTIXCyNn3nn40XoLSU1JbT5dKyPufM1I5TVhNaEsGdoQ4mSVSsFfY42JcMqSRW_Qq9SOhJClODNS3TFGBOyYWyDuh_BwejnA4Z4yUMM3WhS9hb7NJrZpc94n5Zfg4dLF73D08LjHLBJCVLCeQDcn2ebfZhx6LGFOUcz4snYGE6DOcBr9KI3Y4I3j-812n_98vvuvtr9_Pb97nZXWSG3uRKcggNpewJctM4KY1lHbdco0opWcQslulZyqTgTfSOd2nJrJenA9UwRfo0-rrqDGfUp-snEiw7G6_vbnV5yhEjVNC17YIX9sLKnGP6cIWU9-WRhLDtDOCetGJfbhkhRSLaSZZ2UIvRP0pToxQZ91IsNerFBE1q6LPLvHuXP3QTuqeTf3QvwfgV6E7Q5RJ_0_ldRkMWj0pkvxM1KQDnZg4eok_UwW3A-gs3aBf-_Cf4CezeiaQ</recordid><startdate>20120407</startdate><enddate>20120407</enddate><creator>Fischer, S.</creator><creator>Kurbatova, P.</creator><creator>Bessonov, N.</creator><creator>Gandrillon, O.</creator><creator>Volpert, V.</creator><creator>Crauste, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9979-9638</orcidid><orcidid>https://orcid.org/0000-0002-3676-6513</orcidid><orcidid>https://orcid.org/0000-0002-5323-9934</orcidid></search><sort><creationdate>20120407</creationdate><title>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</title><author>Fischer, S. ; Kurbatova, P. ; Bessonov, N. ; Gandrillon, O. ; Volpert, V. ; Crauste, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-431ede5cf0e348dc4ac2b1cb69084893ceeeeb85359324f65d973cc50bedf2903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>apoptosis</topic><topic>Biochemistry, Molecular Biology</topic><topic>blood flow</topic><topic>bone marrow</topic><topic>Bone Marrow Cells</topic><topic>Bone Marrow Cells - physiology</topic><topic>Cell Communication</topic><topic>Cell Communication - physiology</topic><topic>cell cycle</topic><topic>cytokines</topic><topic>death</topic><topic>equations</topic><topic>Erythroblastic island</topic><topic>Erythroblasts</topic><topic>Erythroblasts - physiology</topic><topic>erythrocytes</topic><topic>Erythropoiesis</topic><topic>Erythropoiesis - physiology</topic><topic>Feedback, Physiological</topic><topic>Feedback, Physiological - physiology</topic><topic>Humans</topic><topic>Hybrid model</topic><topic>Life Sciences</topic><topic>Macrophage</topic><topic>Macrophages</topic><topic>Macrophages - physiology</topic><topic>mitotic spindle apparatus</topic><topic>Models, Biological</topic><topic>proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, S.</creatorcontrib><creatorcontrib>Kurbatova, P.</creatorcontrib><creatorcontrib>Bessonov, N.</creatorcontrib><creatorcontrib>Gandrillon, O.</creatorcontrib><creatorcontrib>Volpert, V.</creatorcontrib><creatorcontrib>Crauste, F.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, S.</au><au>Kurbatova, P.</au><au>Bessonov, N.</au><au>Gandrillon, O.</au><au>Volpert, V.</au><au>Crauste, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2012-04-07</date><risdate>2012</risdate><volume>298</volume><spage>92</spage><epage>106</epage><pages>92-106</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>The production and regulation of red blood cells, erythropoiesis, occurs in the bone marrow where erythroid cells proliferate and differentiate within particular structures, called erythroblastic islands. A typical structure of these islands consists of a macrophage (white cell) surrounded by immature erythroid cells (progenitors), with more mature cells on the periphery of the island, ready to leave the bone marrow and enter the bloodstream. A hybrid model, coupling a continuous model (ordinary differential equations) describing intracellular regulation through competition of two key proteins, to a discrete spatial model describing cell–cell interactions, with growth factor diffusion in the medium described by a continuous model (partial differential equations), is proposed to investigate the role of the central macrophage in normal erythropoiesis. Intracellular competition of the two proteins leads the erythroid cell to either proliferation, differentiation, or death by apoptosis. This approach allows considering spatial aspects of erythropoiesis, involved for instance in the occurrence of cellular interactions or the access to external factors, as well as dynamics of intracellular and extracellular scales of this complex cellular process, accounting for stochasticity in cell cycle durations and orientation of the mitotic spindle. The analysis of the model shows a strong effect of the central macrophage on the stability of an erythroblastic island, when assuming the macrophage releases pro-survival cytokines. Even though it is not clear whether or not erythroblastic island stability must be required, investigation of the model concludes that stability improves responsiveness of the model, hence stressing out the potential relevance of the central macrophage in normal erythropoiesis.
► To our knowledge, the first in silico model of erythroblastic island. ► A coupled continuous and discrete hybrid model of erythropoiesis. ► Intracellular and spatial regulation of cell differentiation and proliferation. ► Investigation of the role and influence of a macrophage in erythropoiesis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22245622</pmid><doi>10.1016/j.jtbi.2012.01.002</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9979-9638</orcidid><orcidid>https://orcid.org/0000-0002-3676-6513</orcidid><orcidid>https://orcid.org/0000-0002-5323-9934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2012-04, Vol.298, p.92-106 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00596682v2 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | apoptosis Biochemistry, Molecular Biology blood flow bone marrow Bone Marrow Cells Bone Marrow Cells - physiology Cell Communication Cell Communication - physiology cell cycle cytokines death equations Erythroblastic island Erythroblasts Erythroblasts - physiology erythrocytes Erythropoiesis Erythropoiesis - physiology Feedback, Physiological Feedback, Physiological - physiology Humans Hybrid model Life Sciences Macrophage Macrophages Macrophages - physiology mitotic spindle apparatus Models, Biological proteins |
title | Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20erythroblastic%20islands:%20Using%20a%20hybrid%20model%20to%20assess%20the%20function%20of%20central%20macrophage&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Fischer,%20S.&rft.date=2012-04-07&rft.volume=298&rft.spage=92&rft.epage=106&rft.pages=92-106&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2012.01.002&rft_dat=%3Cproquest_hal_p%3E923576054%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923576054&rft_id=info:pmid/22245622&rft_els_id=S0022519312000033&rfr_iscdi=true |