Evaluation of a Theory of Instructional Sequences for Physics Instruction

The background of the study is the theory of basis models of teaching and learning, a comprehensive set of models of learning processes which includes, for example, learning through experience and problem-solving. The combined use of different models of learning processes has not been fully investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of science education 2010-05, Vol.32 (7), p.963-985
Hauptverfasser: Wackermann, Rainer, Trendel, Georg, Fischer, Hans E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The background of the study is the theory of basis models of teaching and learning, a comprehensive set of models of learning processes which includes, for example, learning through experience and problem-solving. The combined use of different models of learning processes has not been fully investigated and it is frequently not clear under what circumstances a particular model should be used by teachers. In contrast, the theory under investigation here gives guidelines for choosing a particular model and provides instructional sequences for each model. The aim is to investigate the implementation of the theory applied to physics instruction and to show if possible effects for the students may be attributed to the use of the theory. Therefore, a theory-oriented education programme for 18 physics teachers was developed and implemented in the 2005/06 school year. The main features of the intervention consisted of coaching physics lessons and video analysis according to the theory. The study follows a pre-treatment-post design with non-equivalent control group. Findings of repeated-measures ANOVAs show large effects for teachers' subjective beliefs, large effects for classroom actions, and small to medium effects for student outcomes such as perceived instructional quality and student emotions. The teachers/classes that applied the theory especially well according to video analysis showed the larger effects. The results showed that differentiating between different models of learning processes improves physics instruction. Effects can be followed through to student outcomes. The education programme effect was clearer for classroom actions and students' outcomes than for teachers' beliefs.
ISSN:0950-0693
1464-5289
DOI:10.1080/09500690902984792