Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites
This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index f...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2010-11, Vol.394 (1-2), p.101-117 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1-2 |
container_start_page | 101 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 394 |
creator | Gaume, E. Gaál, L. Viglione, A. Szolgay, J. Kohnová, S. Blöschl, G. |
description | This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles.
The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information. |
doi_str_mv | 10.1016/j.jhydrol.2010.01.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00586917v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169410000193</els_id><sourcerecordid>815539415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhi0EEqXwExC-IQ4p49j5OqGlgl2krjjAnq1Ze5K6ysbFTiPy73GUaq_4MJZePTPvfDD2XsBOgCg_n3an42yD73c5JA3EDqB-wTairposr6B6yTYAeZ6JslGv2ZsYT5CelGrDwlecKToc-P3-fs_xfA4ezZGPngfqnB-w523vveVtoD8XGszMMYlzpMjdMPl-ckPH6e8Y0AfrBgzzNYEmGsbIceSXocNLR5ZHN1J8y1612Ed6d_237OH7t9_7u-zw8_bH_uaQocrzMbNU1bYpHwlagQVaBdQUlYIlUElSipZEq7BGrFAU0hoj6ZGMErXFpqzlln1a6x6x1-fgnlJr2qPTdzcHvWgARV02oppEYj-ubBo_TRlH_eSiob7Hgfwl6loUhWxUstmyYiVN8DEGap9LC9DLOfRJX8-hl3NoEMlo6ebDmtei19gFF_XDrwRIEA2UpVqILytBaSmTo6CjcWnhZF0gM2rr3X88_gFw5aGi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815539415</pqid></control><display><type>article</type><title>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</title><source>Elsevier ScienceDirect Journals</source><creator>Gaume, E. ; Gaál, L. ; Viglione, A. ; Szolgay, J. ; Kohnová, S. ; Blöschl, G.</creator><creatorcontrib>Gaume, E. ; Gaál, L. ; Viglione, A. ; Szolgay, J. ; Kohnová, S. ; Blöschl, G.</creatorcontrib><description>This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles.
The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2010.01.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian analysis ; Bayesian MCMC ; Confidence intervals ; Earth Sciences ; Environmental Sciences ; Flash flooding ; Flash floods ; Floods ; France ; Freshwater ; Global Changes ; Hydrology ; Monte Carlo methods ; Quantiles ; Regional ; Regional flood frequency analysis ; Sciences of the Universe ; Slovakia ; Uncertainty ; Ungauged extremes</subject><ispartof>Journal of hydrology (Amsterdam), 2010-11, Vol.394 (1-2), p.101-117</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</citedby><cites>FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</cites><orcidid>0000-0002-7260-9793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169410000193$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00586917$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaume, E.</creatorcontrib><creatorcontrib>Gaál, L.</creatorcontrib><creatorcontrib>Viglione, A.</creatorcontrib><creatorcontrib>Szolgay, J.</creatorcontrib><creatorcontrib>Kohnová, S.</creatorcontrib><creatorcontrib>Blöschl, G.</creatorcontrib><title>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</title><title>Journal of hydrology (Amsterdam)</title><description>This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles.
The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information.</description><subject>Bayesian analysis</subject><subject>Bayesian MCMC</subject><subject>Confidence intervals</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Flash flooding</subject><subject>Flash floods</subject><subject>Floods</subject><subject>France</subject><subject>Freshwater</subject><subject>Global Changes</subject><subject>Hydrology</subject><subject>Monte Carlo methods</subject><subject>Quantiles</subject><subject>Regional</subject><subject>Regional flood frequency analysis</subject><subject>Sciences of the Universe</subject><subject>Slovakia</subject><subject>Uncertainty</subject><subject>Ungauged extremes</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhi0EEqXwExC-IQ4p49j5OqGlgl2krjjAnq1Ze5K6ysbFTiPy73GUaq_4MJZePTPvfDD2XsBOgCg_n3an42yD73c5JA3EDqB-wTairposr6B6yTYAeZ6JslGv2ZsYT5CelGrDwlecKToc-P3-fs_xfA4ezZGPngfqnB-w523vveVtoD8XGszMMYlzpMjdMPl-ckPH6e8Y0AfrBgzzNYEmGsbIceSXocNLR5ZHN1J8y1612Ed6d_237OH7t9_7u-zw8_bH_uaQocrzMbNU1bYpHwlagQVaBdQUlYIlUElSipZEq7BGrFAU0hoj6ZGMErXFpqzlln1a6x6x1-fgnlJr2qPTdzcHvWgARV02oppEYj-ubBo_TRlH_eSiob7Hgfwl6loUhWxUstmyYiVN8DEGap9LC9DLOfRJX8-hl3NoEMlo6ebDmtei19gFF_XDrwRIEA2UpVqILytBaSmTo6CjcWnhZF0gM2rr3X88_gFw5aGi</recordid><startdate>20101117</startdate><enddate>20101117</enddate><creator>Gaume, E.</creator><creator>Gaál, L.</creator><creator>Viglione, A.</creator><creator>Szolgay, J.</creator><creator>Kohnová, S.</creator><creator>Blöschl, G.</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7260-9793</orcidid></search><sort><creationdate>20101117</creationdate><title>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</title><author>Gaume, E. ; Gaál, L. ; Viglione, A. ; Szolgay, J. ; Kohnová, S. ; Blöschl, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Bayesian MCMC</topic><topic>Confidence intervals</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Flash flooding</topic><topic>Flash floods</topic><topic>Floods</topic><topic>France</topic><topic>Freshwater</topic><topic>Global Changes</topic><topic>Hydrology</topic><topic>Monte Carlo methods</topic><topic>Quantiles</topic><topic>Regional</topic><topic>Regional flood frequency analysis</topic><topic>Sciences of the Universe</topic><topic>Slovakia</topic><topic>Uncertainty</topic><topic>Ungauged extremes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaume, E.</creatorcontrib><creatorcontrib>Gaál, L.</creatorcontrib><creatorcontrib>Viglione, A.</creatorcontrib><creatorcontrib>Szolgay, J.</creatorcontrib><creatorcontrib>Kohnová, S.</creatorcontrib><creatorcontrib>Blöschl, G.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaume, E.</au><au>Gaál, L.</au><au>Viglione, A.</au><au>Szolgay, J.</au><au>Kohnová, S.</au><au>Blöschl, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2010-11-17</date><risdate>2010</risdate><volume>394</volume><issue>1-2</issue><spage>101</spage><epage>117</epage><pages>101-117</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles.
The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2010.01.008</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7260-9793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2010-11, Vol.394 (1-2), p.101-117 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00586917v1 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian analysis Bayesian MCMC Confidence intervals Earth Sciences Environmental Sciences Flash flooding Flash floods Floods France Freshwater Global Changes Hydrology Monte Carlo methods Quantiles Regional Regional flood frequency analysis Sciences of the Universe Slovakia Uncertainty Ungauged extremes |
title | Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20MCMC%20approach%20to%20regional%20flood%20frequency%20analyses%20involving%20extraordinary%20flood%20events%20at%20ungauged%20sites&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gaume,%20E.&rft.date=2010-11-17&rft.volume=394&rft.issue=1-2&rft.spage=101&rft.epage=117&rft.pages=101-117&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2010.01.008&rft_dat=%3Cproquest_hal_p%3E815539415%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815539415&rft_id=info:pmid/&rft_els_id=S0022169410000193&rfr_iscdi=true |