Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites

This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2010-11, Vol.394 (1-2), p.101-117
Hauptverfasser: Gaume, E., Gaál, L., Viglione, A., Szolgay, J., Kohnová, S., Blöschl, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1-2
container_start_page 101
container_title Journal of hydrology (Amsterdam)
container_volume 394
creator Gaume, E.
Gaál, L.
Viglione, A.
Szolgay, J.
Kohnová, S.
Blöschl, G.
description This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles. The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information.
doi_str_mv 10.1016/j.jhydrol.2010.01.008
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00586917v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169410000193</els_id><sourcerecordid>815539415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhi0EEqXwExC-IQ4p49j5OqGlgl2krjjAnq1Ze5K6ysbFTiPy73GUaq_4MJZePTPvfDD2XsBOgCg_n3an42yD73c5JA3EDqB-wTairposr6B6yTYAeZ6JslGv2ZsYT5CelGrDwlecKToc-P3-fs_xfA4ezZGPngfqnB-w523vveVtoD8XGszMMYlzpMjdMPl-ckPH6e8Y0AfrBgzzNYEmGsbIceSXocNLR5ZHN1J8y1612Ed6d_237OH7t9_7u-zw8_bH_uaQocrzMbNU1bYpHwlagQVaBdQUlYIlUElSipZEq7BGrFAU0hoj6ZGMErXFpqzlln1a6x6x1-fgnlJr2qPTdzcHvWgARV02oppEYj-ubBo_TRlH_eSiob7Hgfwl6loUhWxUstmyYiVN8DEGap9LC9DLOfRJX8-hl3NoEMlo6ebDmtei19gFF_XDrwRIEA2UpVqILytBaSmTo6CjcWnhZF0gM2rr3X88_gFw5aGi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815539415</pqid></control><display><type>article</type><title>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</title><source>Elsevier ScienceDirect Journals</source><creator>Gaume, E. ; Gaál, L. ; Viglione, A. ; Szolgay, J. ; Kohnová, S. ; Blöschl, G.</creator><creatorcontrib>Gaume, E. ; Gaál, L. ; Viglione, A. ; Szolgay, J. ; Kohnová, S. ; Blöschl, G.</creatorcontrib><description>This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles. The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2010.01.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian analysis ; Bayesian MCMC ; Confidence intervals ; Earth Sciences ; Environmental Sciences ; Flash flooding ; Flash floods ; Floods ; France ; Freshwater ; Global Changes ; Hydrology ; Monte Carlo methods ; Quantiles ; Regional ; Regional flood frequency analysis ; Sciences of the Universe ; Slovakia ; Uncertainty ; Ungauged extremes</subject><ispartof>Journal of hydrology (Amsterdam), 2010-11, Vol.394 (1-2), p.101-117</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</citedby><cites>FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</cites><orcidid>0000-0002-7260-9793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169410000193$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00586917$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaume, E.</creatorcontrib><creatorcontrib>Gaál, L.</creatorcontrib><creatorcontrib>Viglione, A.</creatorcontrib><creatorcontrib>Szolgay, J.</creatorcontrib><creatorcontrib>Kohnová, S.</creatorcontrib><creatorcontrib>Blöschl, G.</creatorcontrib><title>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</title><title>Journal of hydrology (Amsterdam)</title><description>This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles. The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information.</description><subject>Bayesian analysis</subject><subject>Bayesian MCMC</subject><subject>Confidence intervals</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Flash flooding</subject><subject>Flash floods</subject><subject>Floods</subject><subject>France</subject><subject>Freshwater</subject><subject>Global Changes</subject><subject>Hydrology</subject><subject>Monte Carlo methods</subject><subject>Quantiles</subject><subject>Regional</subject><subject>Regional flood frequency analysis</subject><subject>Sciences of the Universe</subject><subject>Slovakia</subject><subject>Uncertainty</subject><subject>Ungauged extremes</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhi0EEqXwExC-IQ4p49j5OqGlgl2krjjAnq1Ze5K6ysbFTiPy73GUaq_4MJZePTPvfDD2XsBOgCg_n3an42yD73c5JA3EDqB-wTairposr6B6yTYAeZ6JslGv2ZsYT5CelGrDwlecKToc-P3-fs_xfA4ezZGPngfqnB-w523vveVtoD8XGszMMYlzpMjdMPl-ckPH6e8Y0AfrBgzzNYEmGsbIceSXocNLR5ZHN1J8y1612Ed6d_237OH7t9_7u-zw8_bH_uaQocrzMbNU1bYpHwlagQVaBdQUlYIlUElSipZEq7BGrFAU0hoj6ZGMErXFpqzlln1a6x6x1-fgnlJr2qPTdzcHvWgARV02oppEYj-ubBo_TRlH_eSiob7Hgfwl6loUhWxUstmyYiVN8DEGap9LC9DLOfRJX8-hl3NoEMlo6ebDmtei19gFF_XDrwRIEA2UpVqILytBaSmTo6CjcWnhZF0gM2rr3X88_gFw5aGi</recordid><startdate>20101117</startdate><enddate>20101117</enddate><creator>Gaume, E.</creator><creator>Gaál, L.</creator><creator>Viglione, A.</creator><creator>Szolgay, J.</creator><creator>Kohnová, S.</creator><creator>Blöschl, G.</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7260-9793</orcidid></search><sort><creationdate>20101117</creationdate><title>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</title><author>Gaume, E. ; Gaál, L. ; Viglione, A. ; Szolgay, J. ; Kohnová, S. ; Blöschl, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-de78d96be0f1a5ad40e957409574e6e331fe1f4a8aa7a153dcc3ebec418da9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Bayesian MCMC</topic><topic>Confidence intervals</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Flash flooding</topic><topic>Flash floods</topic><topic>Floods</topic><topic>France</topic><topic>Freshwater</topic><topic>Global Changes</topic><topic>Hydrology</topic><topic>Monte Carlo methods</topic><topic>Quantiles</topic><topic>Regional</topic><topic>Regional flood frequency analysis</topic><topic>Sciences of the Universe</topic><topic>Slovakia</topic><topic>Uncertainty</topic><topic>Ungauged extremes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaume, E.</creatorcontrib><creatorcontrib>Gaál, L.</creatorcontrib><creatorcontrib>Viglione, A.</creatorcontrib><creatorcontrib>Szolgay, J.</creatorcontrib><creatorcontrib>Kohnová, S.</creatorcontrib><creatorcontrib>Blöschl, G.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaume, E.</au><au>Gaál, L.</au><au>Viglione, A.</au><au>Szolgay, J.</au><au>Kohnová, S.</au><au>Blöschl, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2010-11-17</date><risdate>2010</risdate><volume>394</volume><issue>1-2</issue><spage>101</spage><epage>117</epage><pages>101-117</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>This paper proposes a method for using major flash flood events occurred at ungauged catchments to reduce the uncertainties in estimating regional flood quantiles. The approach is based on standard regionalization methods assuming that the flood peak distribution rescaled by a site-dependent index flood is uniform within a homogeneous region. A likelihood formulation and a Bayesian Markov Chain Monte Carlo (MCMC) algorithm are used to infer the parameter values of the regional distributions. This statistical inference technique has been selected for its rigorousness – various hypotheses are explicitly formulated in the likelihood function, its flexibility as for the type of data that can be treated, and its ability to compute accurate estimates of the confidence intervals for the adjusted parameters and for the corresponding flood quantiles. The proposed method is applied to two data sets from Slovakia and the South of France that consist of series of annual peak discharges at gauged sites and estimated peak discharges of extreme flash flood events that have occurred at ungauged sites. The results suggest that the confidence intervals of the quantiles can be significantly narrowed down provided that the set of ungauged extremes is the result of a comprehensive sampling over the selected region. This remains valid, even if the uncertainties in the estimated ungauged extreme discharges are considered. The flood quantiles estimated by the proposed method are also consistent with the results of site specific flood frequency studies based on historic and paleoflood information.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2010.01.008</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7260-9793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2010-11, Vol.394 (1-2), p.101-117
issn 0022-1694
1879-2707
language eng
recordid cdi_hal_primary_oai_HAL_hal_00586917v1
source Elsevier ScienceDirect Journals
subjects Bayesian analysis
Bayesian MCMC
Confidence intervals
Earth Sciences
Environmental Sciences
Flash flooding
Flash floods
Floods
France
Freshwater
Global Changes
Hydrology
Monte Carlo methods
Quantiles
Regional
Regional flood frequency analysis
Sciences of the Universe
Slovakia
Uncertainty
Ungauged extremes
title Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20MCMC%20approach%20to%20regional%20flood%20frequency%20analyses%20involving%20extraordinary%20flood%20events%20at%20ungauged%20sites&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gaume,%20E.&rft.date=2010-11-17&rft.volume=394&rft.issue=1-2&rft.spage=101&rft.epage=117&rft.pages=101-117&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2010.01.008&rft_dat=%3Cproquest_hal_p%3E815539415%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815539415&rft_id=info:pmid/&rft_els_id=S0022169410000193&rfr_iscdi=true