Pearson random walk algorithms for fiber-scale modeling of Chemical Vapor Infiltration

[Display omitted] ► The model involves rarefied gas diffusion and reaction and surface growth. ► It applies to large 3D images of fibrous media. ► The code is validated on cases with analytical estimates. ► Direct simulations or input for large scale simulation are obtained.Influence of diffusion/re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2011-01, Vol.50 (3), p.1157-1168
Hauptverfasser: Vignoles, G.L., Ros, W., Mulat, C., Coindreau, O., Germain, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1168
container_issue 3
container_start_page 1157
container_title Computational materials science
container_volume 50
creator Vignoles, G.L.
Ros, W.
Mulat, C.
Coindreau, O.
Germain, C.
description [Display omitted] ► The model involves rarefied gas diffusion and reaction and surface growth. ► It applies to large 3D images of fibrous media. ► The code is validated on cases with analytical estimates. ► Direct simulations or input for large scale simulation are obtained.Influence of diffusion/reaction competition on deposit morphology. Chemical Vapor Infiltration (CVI) is a popular processing route for the preparation of high-quality Ceramic-Matrix Composites which involves rarefied gas transfer in a disordered fibrous array and heterogeneous deposition reactions. The fiber-scale modeling of CVI in large 3D images of actual porous media (e.g. tomographic images) is a challenging task. We address it with a numerical method based on Pearson random walks for transport/reaction of gases, on a Simplified Marching Cubes technique for the surface discretization, and on a pseudo-VOF technique for surface growth. Two different chemical situations are considered, depending on whether the gas precursor is synthesized inside the pores or not. Numerical validations of the code with respect to analytical estimates are presented; finally, in applications to large 3D images of fibrous media, we discuss the consequences of the competition between diffusion and reaction on the deposit morphology.
doi_str_mv 10.1016/j.commatsci.2010.11.015
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00584762v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025610006373</els_id><sourcerecordid>864398537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-33d66f3d8111a175616ee946f6eb1ca6cc0b06feeb51da47e3be3d73baf78d073</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVpoNO0z1BtSunCE13LluTlMDRNYCBZNNkKWb7KaCpbU8lJ6NtXZsJsu7pwOD_cj5AvwNbAQFwd1jaOo5mz9euaLSqsGbTvyAqU7CqmGLwnK9bVsmJ1Kz6QjzkfWEl2ql6Rx3s0KceJJjMNcaSvJvymJjzF5Of9mKmLiTrfY6qyNQHpGAcMfnqi0dHtHkdfVPpojsV2Ozkf5mRmH6dP5MKZkPHz270kD9c_fm1vqt3dz9vtZlfZBmCuOB-EcHxQAGBAtgIEYtcIJ7AHa4S1rGfCIfYtDKaRyHvkg-S9cVINTPJL8v3UuzdBH5MfTfqro_H6ZrPTi8ZYqxop6hco3m8n7zHFP8-YZz36bDEEM2F8zlqJhneq5UurPDltijkndOdqYHqBrg_6DF0v0DWALtBL8uvbhll4uULV-nyO11yVF5tlYXPyYYHz4jHp0oSTxcEntLMeov_v1j_zApyT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864398537</pqid></control><display><type>article</type><title>Pearson random walk algorithms for fiber-scale modeling of Chemical Vapor Infiltration</title><source>Elsevier ScienceDirect Journals</source><creator>Vignoles, G.L. ; Ros, W. ; Mulat, C. ; Coindreau, O. ; Germain, C.</creator><creatorcontrib>Vignoles, G.L. ; Ros, W. ; Mulat, C. ; Coindreau, O. ; Germain, C.</creatorcontrib><description>[Display omitted] ► The model involves rarefied gas diffusion and reaction and surface growth. ► It applies to large 3D images of fibrous media. ► The code is validated on cases with analytical estimates. ► Direct simulations or input for large scale simulation are obtained.Influence of diffusion/reaction competition on deposit morphology. Chemical Vapor Infiltration (CVI) is a popular processing route for the preparation of high-quality Ceramic-Matrix Composites which involves rarefied gas transfer in a disordered fibrous array and heterogeneous deposition reactions. The fiber-scale modeling of CVI in large 3D images of actual porous media (e.g. tomographic images) is a challenging task. We address it with a numerical method based on Pearson random walks for transport/reaction of gases, on a Simplified Marching Cubes technique for the surface discretization, and on a pseudo-VOF technique for surface growth. Two different chemical situations are considered, depending on whether the gas precursor is synthesized inside the pores or not. Numerical validations of the code with respect to analytical estimates are presented; finally, in applications to large 3D images of fibrous media, we discuss the consequences of the competition between diffusion and reaction on the deposit morphology.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2010.11.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D Image-based modeling ; Chemical Sciences ; Chemical Vapor Deposition ; Chemical Vapor Infiltration ; Computer Science ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Diffusion/reaction problems ; Engineering Sciences ; Estimates ; Exact sciences and technology ; Material chemistry ; Materials science ; Materials synthesis; materials processing ; Mathematical models ; Media ; Morphology ; Physics ; Porous media ; Random walks ; Signal and Image processing ; Three dimensional</subject><ispartof>Computational materials science, 2011-01, Vol.50 (3), p.1157-1168</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-33d66f3d8111a175616ee946f6eb1ca6cc0b06feeb51da47e3be3d73baf78d073</citedby><cites>FETCH-LOGICAL-c411t-33d66f3d8111a175616ee946f6eb1ca6cc0b06feeb51da47e3be3d73baf78d073</cites><orcidid>0000-0002-3097-8283 ; 0000-0003-1606-6867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025610006373$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23861647$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00584762$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vignoles, G.L.</creatorcontrib><creatorcontrib>Ros, W.</creatorcontrib><creatorcontrib>Mulat, C.</creatorcontrib><creatorcontrib>Coindreau, O.</creatorcontrib><creatorcontrib>Germain, C.</creatorcontrib><title>Pearson random walk algorithms for fiber-scale modeling of Chemical Vapor Infiltration</title><title>Computational materials science</title><description>[Display omitted] ► The model involves rarefied gas diffusion and reaction and surface growth. ► It applies to large 3D images of fibrous media. ► The code is validated on cases with analytical estimates. ► Direct simulations or input for large scale simulation are obtained.Influence of diffusion/reaction competition on deposit morphology. Chemical Vapor Infiltration (CVI) is a popular processing route for the preparation of high-quality Ceramic-Matrix Composites which involves rarefied gas transfer in a disordered fibrous array and heterogeneous deposition reactions. The fiber-scale modeling of CVI in large 3D images of actual porous media (e.g. tomographic images) is a challenging task. We address it with a numerical method based on Pearson random walks for transport/reaction of gases, on a Simplified Marching Cubes technique for the surface discretization, and on a pseudo-VOF technique for surface growth. Two different chemical situations are considered, depending on whether the gas precursor is synthesized inside the pores or not. Numerical validations of the code with respect to analytical estimates are presented; finally, in applications to large 3D images of fibrous media, we discuss the consequences of the competition between diffusion and reaction on the deposit morphology.</description><subject>3D Image-based modeling</subject><subject>Chemical Sciences</subject><subject>Chemical Vapor Deposition</subject><subject>Chemical Vapor Infiltration</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion/reaction problems</subject><subject>Engineering Sciences</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Morphology</subject><subject>Physics</subject><subject>Porous media</subject><subject>Random walks</subject><subject>Signal and Image processing</subject><subject>Three dimensional</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAUhUVpoNO0z1BtSunCE13LluTlMDRNYCBZNNkKWb7KaCpbU8lJ6NtXZsJsu7pwOD_cj5AvwNbAQFwd1jaOo5mz9euaLSqsGbTvyAqU7CqmGLwnK9bVsmJ1Kz6QjzkfWEl2ql6Rx3s0KceJJjMNcaSvJvymJjzF5Of9mKmLiTrfY6qyNQHpGAcMfnqi0dHtHkdfVPpojsV2Ozkf5mRmH6dP5MKZkPHz270kD9c_fm1vqt3dz9vtZlfZBmCuOB-EcHxQAGBAtgIEYtcIJ7AHa4S1rGfCIfYtDKaRyHvkg-S9cVINTPJL8v3UuzdBH5MfTfqro_H6ZrPTi8ZYqxop6hco3m8n7zHFP8-YZz36bDEEM2F8zlqJhneq5UurPDltijkndOdqYHqBrg_6DF0v0DWALtBL8uvbhll4uULV-nyO11yVF5tlYXPyYYHz4jHp0oSTxcEntLMeov_v1j_zApyT</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Vignoles, G.L.</creator><creator>Ros, W.</creator><creator>Mulat, C.</creator><creator>Coindreau, O.</creator><creator>Germain, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3097-8283</orcidid><orcidid>https://orcid.org/0000-0003-1606-6867</orcidid></search><sort><creationdate>20110101</creationdate><title>Pearson random walk algorithms for fiber-scale modeling of Chemical Vapor Infiltration</title><author>Vignoles, G.L. ; Ros, W. ; Mulat, C. ; Coindreau, O. ; Germain, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-33d66f3d8111a175616ee946f6eb1ca6cc0b06feeb51da47e3be3d73baf78d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>3D Image-based modeling</topic><topic>Chemical Sciences</topic><topic>Chemical Vapor Deposition</topic><topic>Chemical Vapor Infiltration</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion/reaction problems</topic><topic>Engineering Sciences</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Morphology</topic><topic>Physics</topic><topic>Porous media</topic><topic>Random walks</topic><topic>Signal and Image processing</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vignoles, G.L.</creatorcontrib><creatorcontrib>Ros, W.</creatorcontrib><creatorcontrib>Mulat, C.</creatorcontrib><creatorcontrib>Coindreau, O.</creatorcontrib><creatorcontrib>Germain, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignoles, G.L.</au><au>Ros, W.</au><au>Mulat, C.</au><au>Coindreau, O.</au><au>Germain, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pearson random walk algorithms for fiber-scale modeling of Chemical Vapor Infiltration</atitle><jtitle>Computational materials science</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>50</volume><issue>3</issue><spage>1157</spage><epage>1168</epage><pages>1157-1168</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] ► The model involves rarefied gas diffusion and reaction and surface growth. ► It applies to large 3D images of fibrous media. ► The code is validated on cases with analytical estimates. ► Direct simulations or input for large scale simulation are obtained.Influence of diffusion/reaction competition on deposit morphology. Chemical Vapor Infiltration (CVI) is a popular processing route for the preparation of high-quality Ceramic-Matrix Composites which involves rarefied gas transfer in a disordered fibrous array and heterogeneous deposition reactions. The fiber-scale modeling of CVI in large 3D images of actual porous media (e.g. tomographic images) is a challenging task. We address it with a numerical method based on Pearson random walks for transport/reaction of gases, on a Simplified Marching Cubes technique for the surface discretization, and on a pseudo-VOF technique for surface growth. Two different chemical situations are considered, depending on whether the gas precursor is synthesized inside the pores or not. Numerical validations of the code with respect to analytical estimates are presented; finally, in applications to large 3D images of fibrous media, we discuss the consequences of the competition between diffusion and reaction on the deposit morphology.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2010.11.015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3097-8283</orcidid><orcidid>https://orcid.org/0000-0003-1606-6867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2011-01, Vol.50 (3), p.1157-1168
issn 0927-0256
1879-0801
language eng
recordid cdi_hal_primary_oai_HAL_hal_00584762v1
source Elsevier ScienceDirect Journals
subjects 3D Image-based modeling
Chemical Sciences
Chemical Vapor Deposition
Chemical Vapor Infiltration
Computer Science
Computer simulation
Cross-disciplinary physics: materials science
rheology
Diffusion/reaction problems
Engineering Sciences
Estimates
Exact sciences and technology
Material chemistry
Materials science
Materials synthesis
materials processing
Mathematical models
Media
Morphology
Physics
Porous media
Random walks
Signal and Image processing
Three dimensional
title Pearson random walk algorithms for fiber-scale modeling of Chemical Vapor Infiltration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pearson%20random%20walk%20algorithms%20for%20fiber-scale%20modeling%20of%20Chemical%20Vapor%20Infiltration&rft.jtitle=Computational%20materials%20science&rft.au=Vignoles,%20G.L.&rft.date=2011-01-01&rft.volume=50&rft.issue=3&rft.spage=1157&rft.epage=1168&rft.pages=1157-1168&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2010.11.015&rft_dat=%3Cproquest_hal_p%3E864398537%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864398537&rft_id=info:pmid/&rft_els_id=S0927025610006373&rfr_iscdi=true