Sedimentation of vesicles: from pear-like shapes to microtether extrusion
We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2011-03, Vol.13 (3), p.035026 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 035026 |
container_title | New journal of physics |
container_volume | 13 |
creator | Huang, Z-H Abkarian, M Viallat, A |
description | We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach |
doi_str_mv | 10.1088/1367-2630/13/3/035026 |
format | Article |
fullrecord | <record><control><sourceid>hal_O3W</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00583690v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00583690v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKuPIOQquHaSdJOst1LUFhY8qOcQuhMa3e0uSSz69u6yUjz04Gl-hv8bho-QawZ3DLSeMSFVxqWAPs3EDEQOXJ6QyWF_-iefk4sY3wEY05xPyPoFK9_gLtnk2x1tHd1j9Jsa4z11oW1ohzZktf9AGre2w0hTSxu_CW3CtMVA8SuFz9izl-TM2Tri1e-ckrfHh9flKiufn9bLRZlt5kqnTAvLBDImlBXSFSgLq_S8yqVQkkNVKUCpwXFkUFjmAHSu5lZLbbnQvNBiSm7Gu1tbmy74xoZv01pvVovSDDuAXAtZwJ713Xzs9v_GGNAdAAZmcGcGL2bw0icjzOiu52DkfNv9G7k9ghyrmq5y4gd5Anu3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</title><source>IOP Publishing Free Content</source><creator>Huang, Z-H ; Abkarian, M ; Viallat, A</creator><creatorcontrib>Huang, Z-H ; Abkarian, M ; Viallat, A</creatorcontrib><description>We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/13/3/035026</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Biological Physics ; Physics</subject><ispartof>New journal of physics, 2011-03, Vol.13 (3), p.035026</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</citedby><cites>FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</cites><orcidid>0000-0001-5802-269X ; 0000-0003-0411-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/13/3/035026/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,861,882,1548,27609,27905,27906,53885,53912</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1367-2630/13/3/035026$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-00583690$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Z-H</creatorcontrib><creatorcontrib>Abkarian, M</creatorcontrib><creatorcontrib>Viallat, A</creatorcontrib><title>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</title><title>New journal of physics</title><description>We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach</description><subject>Biological Physics</subject><subject>Physics</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMoWKuPIOQquHaSdJOst1LUFhY8qOcQuhMa3e0uSSz69u6yUjz04Gl-hv8bho-QawZ3DLSeMSFVxqWAPs3EDEQOXJ6QyWF_-iefk4sY3wEY05xPyPoFK9_gLtnk2x1tHd1j9Jsa4z11oW1ohzZktf9AGre2w0hTSxu_CW3CtMVA8SuFz9izl-TM2Tri1e-ckrfHh9flKiufn9bLRZlt5kqnTAvLBDImlBXSFSgLq_S8yqVQkkNVKUCpwXFkUFjmAHSu5lZLbbnQvNBiSm7Gu1tbmy74xoZv01pvVovSDDuAXAtZwJ713Xzs9v_GGNAdAAZmcGcGL2bw0icjzOiu52DkfNv9G7k9ghyrmq5y4gd5Anu3</recordid><startdate>20110329</startdate><enddate>20110329</enddate><creator>Huang, Z-H</creator><creator>Abkarian, M</creator><creator>Viallat, A</creator><general>IOP Publishing</general><general>Institute of Physics: Open Access Journals</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid></search><sort><creationdate>20110329</creationdate><title>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</title><author>Huang, Z-H ; Abkarian, M ; Viallat, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Z-H</creatorcontrib><creatorcontrib>Abkarian, M</creatorcontrib><creatorcontrib>Viallat, A</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Z-H</au><au>Abkarian, M</au><au>Viallat, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</atitle><jtitle>New journal of physics</jtitle><date>2011-03-29</date><risdate>2011</risdate><volume>13</volume><issue>3</issue><spage>035026</spage><pages>035026-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><abstract>We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach</abstract><pub>IOP Publishing</pub><doi>10.1088/1367-2630/13/3/035026</doi><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2011-03, Vol.13 (3), p.035026 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00583690v1 |
source | IOP Publishing Free Content |
subjects | Biological Physics Physics |
title | Sedimentation of vesicles: from pear-like shapes to microtether extrusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sedimentation%20of%20vesicles:%20from%20pear-like%20shapes%20to%20microtether%20extrusion&rft.jtitle=New%20journal%20of%20physics&rft.au=Huang,%20Z-H&rft.date=2011-03-29&rft.volume=13&rft.issue=3&rft.spage=035026&rft.pages=035026-&rft.issn=1367-2630&rft.eissn=1367-2630&rft_id=info:doi/10.1088/1367-2630/13/3/035026&rft_dat=%3Chal_O3W%3Eoai_HAL_hal_00583690v1%3C/hal_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |