Sedimentation of vesicles: from pear-like shapes to microtether extrusion

We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2011-03, Vol.13 (3), p.035026
Hauptverfasser: Huang, Z-H, Abkarian, M, Viallat, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 035026
container_title New journal of physics
container_volume 13
creator Huang, Z-H
Abkarian, M
Viallat, A
description We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach
doi_str_mv 10.1088/1367-2630/13/3/035026
format Article
fullrecord <record><control><sourceid>hal_O3W</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00583690v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00583690v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKuPIOQquHaSdJOst1LUFhY8qOcQuhMa3e0uSSz69u6yUjz04Gl-hv8bho-QawZ3DLSeMSFVxqWAPs3EDEQOXJ6QyWF_-iefk4sY3wEY05xPyPoFK9_gLtnk2x1tHd1j9Jsa4z11oW1ohzZktf9AGre2w0hTSxu_CW3CtMVA8SuFz9izl-TM2Tri1e-ckrfHh9flKiufn9bLRZlt5kqnTAvLBDImlBXSFSgLq_S8yqVQkkNVKUCpwXFkUFjmAHSu5lZLbbnQvNBiSm7Gu1tbmy74xoZv01pvVovSDDuAXAtZwJ713Xzs9v_GGNAdAAZmcGcGL2bw0icjzOiu52DkfNv9G7k9ghyrmq5y4gd5Anu3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</title><source>IOP Publishing Free Content</source><creator>Huang, Z-H ; Abkarian, M ; Viallat, A</creator><creatorcontrib>Huang, Z-H ; Abkarian, M ; Viallat, A</creatorcontrib><description>We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/13/3/035026</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Biological Physics ; Physics</subject><ispartof>New journal of physics, 2011-03, Vol.13 (3), p.035026</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</citedby><cites>FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</cites><orcidid>0000-0001-5802-269X ; 0000-0003-0411-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/13/3/035026/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,861,882,1548,27609,27905,27906,53885,53912</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1367-2630/13/3/035026$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-00583690$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Z-H</creatorcontrib><creatorcontrib>Abkarian, M</creatorcontrib><creatorcontrib>Viallat, A</creatorcontrib><title>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</title><title>New journal of physics</title><description>We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach</description><subject>Biological Physics</subject><subject>Physics</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMoWKuPIOQquHaSdJOst1LUFhY8qOcQuhMa3e0uSSz69u6yUjz04Gl-hv8bho-QawZ3DLSeMSFVxqWAPs3EDEQOXJ6QyWF_-iefk4sY3wEY05xPyPoFK9_gLtnk2x1tHd1j9Jsa4z11oW1ohzZktf9AGre2w0hTSxu_CW3CtMVA8SuFz9izl-TM2Tri1e-ckrfHh9flKiufn9bLRZlt5kqnTAvLBDImlBXSFSgLq_S8yqVQkkNVKUCpwXFkUFjmAHSu5lZLbbnQvNBiSm7Gu1tbmy74xoZv01pvVovSDDuAXAtZwJ713Xzs9v_GGNAdAAZmcGcGL2bw0icjzOiu52DkfNv9G7k9ghyrmq5y4gd5Anu3</recordid><startdate>20110329</startdate><enddate>20110329</enddate><creator>Huang, Z-H</creator><creator>Abkarian, M</creator><creator>Viallat, A</creator><general>IOP Publishing</general><general>Institute of Physics: Open Access Journals</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid></search><sort><creationdate>20110329</creationdate><title>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</title><author>Huang, Z-H ; Abkarian, M ; Viallat, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-83a13e1137a36f9e69a784d5637620dd70e680f2e109a1f008574a868a2382983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Z-H</creatorcontrib><creatorcontrib>Abkarian, M</creatorcontrib><creatorcontrib>Viallat, A</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Z-H</au><au>Abkarian, M</au><au>Viallat, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sedimentation of vesicles: from pear-like shapes to microtether extrusion</atitle><jtitle>New journal of physics</jtitle><date>2011-03-29</date><risdate>2011</risdate><volume>13</volume><issue>3</issue><spage>035026</spage><pages>035026-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><abstract>We study the sedimentation of buoyant giant lipid vesicles in a quiescent fluid at velocities ranging from 5 to 20 μm/s. Floppy vesicles are deformed by the flow. Their bottom (upstream) part remains spherical while their top (downstream) part narrows down and elongates along the direction of motion, resulting in pear-like shapes or in the reversible formation of a micron-size tube at the vesicle top. The sedimentation velocity of vesicle is very similar to that of a rigid sphere. Using a thermodynamic approach, we show that the hydrodynamic force acting at the top of a floppy vesicle can exceed the critical force needed to draw a membrane tube. We predict that the tube radius scales as the power 1/3 of the ratio of the bending energy to the typical hydrodynamic stress, ηU/R where η is the fluid viscosity, U is the sedimentation velocity and R the vesicle radius. This result is consistent with the reported experimental data. The tensions of vesicles exhibiting a tube and of pear-like shape are deduced from the thermodynamic approach</abstract><pub>IOP Publishing</pub><doi>10.1088/1367-2630/13/3/035026</doi><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-2630
ispartof New journal of physics, 2011-03, Vol.13 (3), p.035026
issn 1367-2630
1367-2630
language eng
recordid cdi_hal_primary_oai_HAL_hal_00583690v1
source IOP Publishing Free Content
subjects Biological Physics
Physics
title Sedimentation of vesicles: from pear-like shapes to microtether extrusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sedimentation%20of%20vesicles:%20from%20pear-like%20shapes%20to%20microtether%20extrusion&rft.jtitle=New%20journal%20of%20physics&rft.au=Huang,%20Z-H&rft.date=2011-03-29&rft.volume=13&rft.issue=3&rft.spage=035026&rft.pages=035026-&rft.issn=1367-2630&rft.eissn=1367-2630&rft_id=info:doi/10.1088/1367-2630/13/3/035026&rft_dat=%3Chal_O3W%3Eoai_HAL_hal_00583690v1%3C/hal_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true