Symbiosis-induced adaptation to oxidative stress
Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress....
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2005-01, Vol.208 (Pt 2), p.277-285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | Pt 2 |
container_start_page | 277 |
container_title | Journal of experimental biology |
container_volume | 208 |
creator | Richier, Sophie Furla, Paola Plantivaux, Amandine Merle, Pierre-Laurent Allemand, Denis |
description | Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host. |
doi_str_mv | 10.1242/jeb.01368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00580421v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17811597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQQBdRbK0e_AOSk-AhdXazH9ljKWqFggf1vOxXcEvSrdmk2H9vaoudyzDD4x0eQrcYpphQ8rjyZgq44OUZGmMqRC4xZedoDEBIDpLKEbpKaQXDcEYv0QgzXtCSijGC911jQkwh5WHteutdpp3edLoLcZ11MYs_wQ3H1mepa31K1-ii0nXyN8c9QZ_PTx_zRb58e3mdz5a5pSXrciqMpdyTCozmhTPAgJZaMseNNUyQoiJUA3jpBDaV5oZLQVyljeNYW4qLCXo4eL90rTZtaHS7U1EHtZgt1f4HwEqgBG_37P2B3bTxu_epU01I1te1XvvYJ4VFiTGT4iS1bUyp9dW_GYPap1RDSvWXcmDvjtLeNN6dyGO74hfzam3b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17811597</pqid></control><display><type>article</type><title>Symbiosis-induced adaptation to oxidative stress</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Company of Biologists</source><creator>Richier, Sophie ; Furla, Paola ; Plantivaux, Amandine ; Merle, Pierre-Laurent ; Allemand, Denis</creator><creatorcontrib>Richier, Sophie ; Furla, Paola ; Plantivaux, Amandine ; Merle, Pierre-Laurent ; Allemand, Denis</creatorcontrib><description>Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.</description><identifier>ISSN: 0022-0949</identifier><identifier>EISSN: 1477-9145</identifier><identifier>DOI: 10.1242/jeb.01368</identifier><identifier>PMID: 15634847</identifier><language>eng</language><publisher>England: The Company of Biologists</publisher><subject>Actinia schmidti ; Adaptation, Physiological ; Anemonia viridis ; Animals ; Biochemistry, Molecular Biology ; Chlorophyll - metabolism ; Dinoflagellida ; Enzyme-Linked Immunosorbent Assay ; Life Sciences ; Marine ; Mediterranean Sea ; Oxidative Stress - physiology ; Oxygen - metabolism ; Proteins - metabolism ; Sea Anemones - physiology ; Superoxide Dismutase - metabolism ; Symbiosis ; Thiobarbiturates - metabolism</subject><ispartof>Journal of experimental biology, 2005-01, Vol.208 (Pt 2), p.277-285</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</citedby><cites>FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15634847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00580421$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richier, Sophie</creatorcontrib><creatorcontrib>Furla, Paola</creatorcontrib><creatorcontrib>Plantivaux, Amandine</creatorcontrib><creatorcontrib>Merle, Pierre-Laurent</creatorcontrib><creatorcontrib>Allemand, Denis</creatorcontrib><title>Symbiosis-induced adaptation to oxidative stress</title><title>Journal of experimental biology</title><addtitle>J Exp Biol</addtitle><description>Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.</description><subject>Actinia schmidti</subject><subject>Adaptation, Physiological</subject><subject>Anemonia viridis</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chlorophyll - metabolism</subject><subject>Dinoflagellida</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Mediterranean Sea</subject><subject>Oxidative Stress - physiology</subject><subject>Oxygen - metabolism</subject><subject>Proteins - metabolism</subject><subject>Sea Anemones - physiology</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Symbiosis</subject><subject>Thiobarbiturates - metabolism</subject><issn>0022-0949</issn><issn>1477-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1Lw0AQQBdRbK0e_AOSk-AhdXazH9ljKWqFggf1vOxXcEvSrdmk2H9vaoudyzDD4x0eQrcYpphQ8rjyZgq44OUZGmMqRC4xZedoDEBIDpLKEbpKaQXDcEYv0QgzXtCSijGC911jQkwh5WHteutdpp3edLoLcZ11MYs_wQ3H1mepa31K1-ii0nXyN8c9QZ_PTx_zRb58e3mdz5a5pSXrciqMpdyTCozmhTPAgJZaMseNNUyQoiJUA3jpBDaV5oZLQVyljeNYW4qLCXo4eL90rTZtaHS7U1EHtZgt1f4HwEqgBG_37P2B3bTxu_epU01I1te1XvvYJ4VFiTGT4iS1bUyp9dW_GYPap1RDSvWXcmDvjtLeNN6dyGO74hfzam3b</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Richier, Sophie</creator><creator>Furla, Paola</creator><creator>Plantivaux, Amandine</creator><creator>Merle, Pierre-Laurent</creator><creator>Allemand, Denis</creator><general>The Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope></search><sort><creationdate>20050101</creationdate><title>Symbiosis-induced adaptation to oxidative stress</title><author>Richier, Sophie ; Furla, Paola ; Plantivaux, Amandine ; Merle, Pierre-Laurent ; Allemand, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Actinia schmidti</topic><topic>Adaptation, Physiological</topic><topic>Anemonia viridis</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chlorophyll - metabolism</topic><topic>Dinoflagellida</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Mediterranean Sea</topic><topic>Oxidative Stress - physiology</topic><topic>Oxygen - metabolism</topic><topic>Proteins - metabolism</topic><topic>Sea Anemones - physiology</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Symbiosis</topic><topic>Thiobarbiturates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richier, Sophie</creatorcontrib><creatorcontrib>Furla, Paola</creatorcontrib><creatorcontrib>Plantivaux, Amandine</creatorcontrib><creatorcontrib>Merle, Pierre-Laurent</creatorcontrib><creatorcontrib>Allemand, Denis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of experimental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richier, Sophie</au><au>Furla, Paola</au><au>Plantivaux, Amandine</au><au>Merle, Pierre-Laurent</au><au>Allemand, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbiosis-induced adaptation to oxidative stress</atitle><jtitle>Journal of experimental biology</jtitle><addtitle>J Exp Biol</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>208</volume><issue>Pt 2</issue><spage>277</spage><epage>285</epage><pages>277-285</pages><issn>0022-0949</issn><eissn>1477-9145</eissn><abstract>Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.</abstract><cop>England</cop><pub>The Company of Biologists</pub><pmid>15634847</pmid><doi>10.1242/jeb.01368</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0949 |
ispartof | Journal of experimental biology, 2005-01, Vol.208 (Pt 2), p.277-285 |
issn | 0022-0949 1477-9145 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00580421v1 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Company of Biologists |
subjects | Actinia schmidti Adaptation, Physiological Anemonia viridis Animals Biochemistry, Molecular Biology Chlorophyll - metabolism Dinoflagellida Enzyme-Linked Immunosorbent Assay Life Sciences Marine Mediterranean Sea Oxidative Stress - physiology Oxygen - metabolism Proteins - metabolism Sea Anemones - physiology Superoxide Dismutase - metabolism Symbiosis Thiobarbiturates - metabolism |
title | Symbiosis-induced adaptation to oxidative stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbiosis-induced%20adaptation%20to%20oxidative%20stress&rft.jtitle=Journal%20of%20experimental%20biology&rft.au=Richier,%20Sophie&rft.date=2005-01-01&rft.volume=208&rft.issue=Pt%202&rft.spage=277&rft.epage=285&rft.pages=277-285&rft.issn=0022-0949&rft.eissn=1477-9145&rft_id=info:doi/10.1242/jeb.01368&rft_dat=%3Cproquest_hal_p%3E17811597%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17811597&rft_id=info:pmid/15634847&rfr_iscdi=true |