Symbiosis-induced adaptation to oxidative stress

Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2005-01, Vol.208 (Pt 2), p.277-285
Hauptverfasser: Richier, Sophie, Furla, Paola, Plantivaux, Amandine, Merle, Pierre-Laurent, Allemand, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue Pt 2
container_start_page 277
container_title Journal of experimental biology
container_volume 208
creator Richier, Sophie
Furla, Paola
Plantivaux, Amandine
Merle, Pierre-Laurent
Allemand, Denis
description Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.
doi_str_mv 10.1242/jeb.01368
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00580421v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17811597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQQBdRbK0e_AOSk-AhdXazH9ljKWqFggf1vOxXcEvSrdmk2H9vaoudyzDD4x0eQrcYpphQ8rjyZgq44OUZGmMqRC4xZedoDEBIDpLKEbpKaQXDcEYv0QgzXtCSijGC911jQkwh5WHteutdpp3edLoLcZ11MYs_wQ3H1mepa31K1-ii0nXyN8c9QZ_PTx_zRb58e3mdz5a5pSXrciqMpdyTCozmhTPAgJZaMseNNUyQoiJUA3jpBDaV5oZLQVyljeNYW4qLCXo4eL90rTZtaHS7U1EHtZgt1f4HwEqgBG_37P2B3bTxu_epU01I1te1XvvYJ4VFiTGT4iS1bUyp9dW_GYPap1RDSvWXcmDvjtLeNN6dyGO74hfzam3b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17811597</pqid></control><display><type>article</type><title>Symbiosis-induced adaptation to oxidative stress</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Company of Biologists</source><creator>Richier, Sophie ; Furla, Paola ; Plantivaux, Amandine ; Merle, Pierre-Laurent ; Allemand, Denis</creator><creatorcontrib>Richier, Sophie ; Furla, Paola ; Plantivaux, Amandine ; Merle, Pierre-Laurent ; Allemand, Denis</creatorcontrib><description>Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.</description><identifier>ISSN: 0022-0949</identifier><identifier>EISSN: 1477-9145</identifier><identifier>DOI: 10.1242/jeb.01368</identifier><identifier>PMID: 15634847</identifier><language>eng</language><publisher>England: The Company of Biologists</publisher><subject>Actinia schmidti ; Adaptation, Physiological ; Anemonia viridis ; Animals ; Biochemistry, Molecular Biology ; Chlorophyll - metabolism ; Dinoflagellida ; Enzyme-Linked Immunosorbent Assay ; Life Sciences ; Marine ; Mediterranean Sea ; Oxidative Stress - physiology ; Oxygen - metabolism ; Proteins - metabolism ; Sea Anemones - physiology ; Superoxide Dismutase - metabolism ; Symbiosis ; Thiobarbiturates - metabolism</subject><ispartof>Journal of experimental biology, 2005-01, Vol.208 (Pt 2), p.277-285</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</citedby><cites>FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15634847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00580421$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richier, Sophie</creatorcontrib><creatorcontrib>Furla, Paola</creatorcontrib><creatorcontrib>Plantivaux, Amandine</creatorcontrib><creatorcontrib>Merle, Pierre-Laurent</creatorcontrib><creatorcontrib>Allemand, Denis</creatorcontrib><title>Symbiosis-induced adaptation to oxidative stress</title><title>Journal of experimental biology</title><addtitle>J Exp Biol</addtitle><description>Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.</description><subject>Actinia schmidti</subject><subject>Adaptation, Physiological</subject><subject>Anemonia viridis</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chlorophyll - metabolism</subject><subject>Dinoflagellida</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Mediterranean Sea</subject><subject>Oxidative Stress - physiology</subject><subject>Oxygen - metabolism</subject><subject>Proteins - metabolism</subject><subject>Sea Anemones - physiology</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Symbiosis</subject><subject>Thiobarbiturates - metabolism</subject><issn>0022-0949</issn><issn>1477-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1Lw0AQQBdRbK0e_AOSk-AhdXazH9ljKWqFggf1vOxXcEvSrdmk2H9vaoudyzDD4x0eQrcYpphQ8rjyZgq44OUZGmMqRC4xZedoDEBIDpLKEbpKaQXDcEYv0QgzXtCSijGC911jQkwh5WHteutdpp3edLoLcZ11MYs_wQ3H1mepa31K1-ii0nXyN8c9QZ_PTx_zRb58e3mdz5a5pSXrciqMpdyTCozmhTPAgJZaMseNNUyQoiJUA3jpBDaV5oZLQVyljeNYW4qLCXo4eL90rTZtaHS7U1EHtZgt1f4HwEqgBG_37P2B3bTxu_epU01I1te1XvvYJ4VFiTGT4iS1bUyp9dW_GYPap1RDSvWXcmDvjtLeNN6dyGO74hfzam3b</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Richier, Sophie</creator><creator>Furla, Paola</creator><creator>Plantivaux, Amandine</creator><creator>Merle, Pierre-Laurent</creator><creator>Allemand, Denis</creator><general>The Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope></search><sort><creationdate>20050101</creationdate><title>Symbiosis-induced adaptation to oxidative stress</title><author>Richier, Sophie ; Furla, Paola ; Plantivaux, Amandine ; Merle, Pierre-Laurent ; Allemand, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-47bc46e2f0ba63db05048a95d6bcb5723f24a00e9d71bfa6b6972dfabd61ac413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Actinia schmidti</topic><topic>Adaptation, Physiological</topic><topic>Anemonia viridis</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chlorophyll - metabolism</topic><topic>Dinoflagellida</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Mediterranean Sea</topic><topic>Oxidative Stress - physiology</topic><topic>Oxygen - metabolism</topic><topic>Proteins - metabolism</topic><topic>Sea Anemones - physiology</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Symbiosis</topic><topic>Thiobarbiturates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richier, Sophie</creatorcontrib><creatorcontrib>Furla, Paola</creatorcontrib><creatorcontrib>Plantivaux, Amandine</creatorcontrib><creatorcontrib>Merle, Pierre-Laurent</creatorcontrib><creatorcontrib>Allemand, Denis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of experimental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richier, Sophie</au><au>Furla, Paola</au><au>Plantivaux, Amandine</au><au>Merle, Pierre-Laurent</au><au>Allemand, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbiosis-induced adaptation to oxidative stress</atitle><jtitle>Journal of experimental biology</jtitle><addtitle>J Exp Biol</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>208</volume><issue>Pt 2</issue><spage>277</spage><epage>285</epage><pages>277-285</pages><issn>0022-0949</issn><eissn>1477-9145</eissn><abstract>Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.</abstract><cop>England</cop><pub>The Company of Biologists</pub><pmid>15634847</pmid><doi>10.1242/jeb.01368</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0949
ispartof Journal of experimental biology, 2005-01, Vol.208 (Pt 2), p.277-285
issn 0022-0949
1477-9145
language eng
recordid cdi_hal_primary_oai_HAL_hal_00580421v1
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Company of Biologists
subjects Actinia schmidti
Adaptation, Physiological
Anemonia viridis
Animals
Biochemistry, Molecular Biology
Chlorophyll - metabolism
Dinoflagellida
Enzyme-Linked Immunosorbent Assay
Life Sciences
Marine
Mediterranean Sea
Oxidative Stress - physiology
Oxygen - metabolism
Proteins - metabolism
Sea Anemones - physiology
Superoxide Dismutase - metabolism
Symbiosis
Thiobarbiturates - metabolism
title Symbiosis-induced adaptation to oxidative stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbiosis-induced%20adaptation%20to%20oxidative%20stress&rft.jtitle=Journal%20of%20experimental%20biology&rft.au=Richier,%20Sophie&rft.date=2005-01-01&rft.volume=208&rft.issue=Pt%202&rft.spage=277&rft.epage=285&rft.pages=277-285&rft.issn=0022-0949&rft.eissn=1477-9145&rft_id=info:doi/10.1242/jeb.01368&rft_dat=%3Cproquest_hal_p%3E17811597%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17811597&rft_id=info:pmid/15634847&rfr_iscdi=true