On the Information Geometry of Audio Streams With Applications to Similarity Computing
This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2011-05, Vol.19 (4), p.837-846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 846 |
---|---|
container_issue | 4 |
container_start_page | 837 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 19 |
creator | Cont, A Dubnov, S Assayag, G |
description | This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching. |
doi_str_mv | 10.1109/TASL.2010.2066266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00579590v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5549864</ieee_id><sourcerecordid>2263765921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</originalsourceid><addsrcrecordid>eNpd0ctq3DAUBmBTWmia9gFKN6JQSheT6si6WEszpElgIIuk7VLIstRRsC1XkgPz9pU7wyyy0uV8OgfxV9VHwFcAWH5_bB92VwSXI8GcE85fVRfAWLMRktDX5z3wt9W7lJ4wpjWncFH9up9Q3lt0N7kQR519mNCNDaPN8YCCQ-3S-4AecrR6TOi3z3vUzvPgzX-aUC5FP_pBR58PaBvGecl--vO-euP0kOyH03pZ_fxx_bi93ezub-627W5jaA15IylY0kDnLHXMGdF0vOswYYyZvnZW9r1tpAHXU8IFE9pqKhgQ3jFBOkNEfVl9O_bd60HN0Y86HlTQXt22O7XeYcyEZBI_Q7Ffj3aO4e9iU1ajT8YOg55sWJJqODDOii_y8wv5FJY4lY-oZh3PhZQFwRGZGFKK1p3nA1ZrJmrNRK2ZqFMm5c2XU2OdjB5c1JPx6fyQUKgZAVrcp6Pz1tpzmTEqG07rf9nVk98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851266799</pqid></control><display><type>article</type><title>On the Information Geometry of Audio Streams With Applications to Similarity Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Cont, A ; Dubnov, S ; Assayag, G</creator><creatorcontrib>Cont, A ; Dubnov, S ; Assayag, G</creatorcontrib><description>This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2010.2066266</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Audio signals ; Computation ; Computer applications ; Computer Science ; Engineering Sciences ; Exact sciences and technology ; Extraterrestrial measurements ; Geometry ; Information analysis ; Information geometry ; Information retrieval ; Information theory ; Information, signal and communications theory ; Machine learning ; Miscellaneous ; Multiple signal classification ; Music ; Music information retrieval ; music information retrieval (MIR) ; On-line systems ; Online ; Permission ; Signal and Image processing ; Signal processing ; Signal processing algorithms ; Similarity ; Statistical methods ; Streaming media ; Streams ; Telecommunications and information theory</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2011-05, Vol.19 (4), p.837-846</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</citedby><cites>FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</cites><orcidid>0000-0002-7352-7212 ; 0000-0002-4427-7373 ; 0000-0003-0222-1125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5549864$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5549864$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24135214$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00579590$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cont, A</creatorcontrib><creatorcontrib>Dubnov, S</creatorcontrib><creatorcontrib>Assayag, G</creatorcontrib><title>On the Information Geometry of Audio Streams With Applications to Similarity Computing</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.</description><subject>Applied sciences</subject><subject>Audio signals</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Geometry</subject><subject>Information analysis</subject><subject>Information geometry</subject><subject>Information retrieval</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Machine learning</subject><subject>Miscellaneous</subject><subject>Multiple signal classification</subject><subject>Music</subject><subject>Music information retrieval</subject><subject>music information retrieval (MIR)</subject><subject>On-line systems</subject><subject>Online</subject><subject>Permission</subject><subject>Signal and Image processing</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Similarity</subject><subject>Statistical methods</subject><subject>Streaming media</subject><subject>Streams</subject><subject>Telecommunications and information theory</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0ctq3DAUBmBTWmia9gFKN6JQSheT6si6WEszpElgIIuk7VLIstRRsC1XkgPz9pU7wyyy0uV8OgfxV9VHwFcAWH5_bB92VwSXI8GcE85fVRfAWLMRktDX5z3wt9W7lJ4wpjWncFH9up9Q3lt0N7kQR519mNCNDaPN8YCCQ-3S-4AecrR6TOi3z3vUzvPgzX-aUC5FP_pBR58PaBvGecl--vO-euP0kOyH03pZ_fxx_bi93ezub-627W5jaA15IylY0kDnLHXMGdF0vOswYYyZvnZW9r1tpAHXU8IFE9pqKhgQ3jFBOkNEfVl9O_bd60HN0Y86HlTQXt22O7XeYcyEZBI_Q7Ffj3aO4e9iU1ajT8YOg55sWJJqODDOii_y8wv5FJY4lY-oZh3PhZQFwRGZGFKK1p3nA1ZrJmrNRK2ZqFMm5c2XU2OdjB5c1JPx6fyQUKgZAVrcp6Pz1tpzmTEqG07rf9nVk98</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Cont, A</creator><creator>Dubnov, S</creator><creator>Assayag, G</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7352-7212</orcidid><orcidid>https://orcid.org/0000-0002-4427-7373</orcidid><orcidid>https://orcid.org/0000-0003-0222-1125</orcidid></search><sort><creationdate>20110501</creationdate><title>On the Information Geometry of Audio Streams With Applications to Similarity Computing</title><author>Cont, A ; Dubnov, S ; Assayag, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Audio signals</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Geometry</topic><topic>Information analysis</topic><topic>Information geometry</topic><topic>Information retrieval</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Machine learning</topic><topic>Miscellaneous</topic><topic>Multiple signal classification</topic><topic>Music</topic><topic>Music information retrieval</topic><topic>music information retrieval (MIR)</topic><topic>On-line systems</topic><topic>Online</topic><topic>Permission</topic><topic>Signal and Image processing</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Similarity</topic><topic>Statistical methods</topic><topic>Streaming media</topic><topic>Streams</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cont, A</creatorcontrib><creatorcontrib>Dubnov, S</creatorcontrib><creatorcontrib>Assayag, G</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cont, A</au><au>Dubnov, S</au><au>Assayag, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Information Geometry of Audio Streams With Applications to Similarity Computing</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>837</spage><epage>846</epage><pages>837-846</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2010.2066266</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7352-7212</orcidid><orcidid>https://orcid.org/0000-0002-4427-7373</orcidid><orcidid>https://orcid.org/0000-0003-0222-1125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2011-05, Vol.19 (4), p.837-846 |
issn | 1558-7916 2329-9290 1558-7924 2329-9304 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00579590v1 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Audio signals Computation Computer applications Computer Science Engineering Sciences Exact sciences and technology Extraterrestrial measurements Geometry Information analysis Information geometry Information retrieval Information theory Information, signal and communications theory Machine learning Miscellaneous Multiple signal classification Music Music information retrieval music information retrieval (MIR) On-line systems Online Permission Signal and Image processing Signal processing Signal processing algorithms Similarity Statistical methods Streaming media Streams Telecommunications and information theory |
title | On the Information Geometry of Audio Streams With Applications to Similarity Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Information%20Geometry%20of%20Audio%20Streams%20With%20Applications%20to%20Similarity%20Computing&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Cont,%20A&rft.date=2011-05-01&rft.volume=19&rft.issue=4&rft.spage=837&rft.epage=846&rft.pages=837-846&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2010.2066266&rft_dat=%3Cproquest_RIE%3E2263765921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851266799&rft_id=info:pmid/&rft_ieee_id=5549864&rfr_iscdi=true |