On the Information Geometry of Audio Streams With Applications to Similarity Computing

This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2011-05, Vol.19 (4), p.837-846
Hauptverfasser: Cont, A, Dubnov, S, Assayag, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue 4
container_start_page 837
container_title IEEE transactions on audio, speech, and language processing
container_volume 19
creator Cont, A
Dubnov, S
Assayag, G
description This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.
doi_str_mv 10.1109/TASL.2010.2066266
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00579590v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5549864</ieee_id><sourcerecordid>2263765921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</originalsourceid><addsrcrecordid>eNpd0ctq3DAUBmBTWmia9gFKN6JQSheT6si6WEszpElgIIuk7VLIstRRsC1XkgPz9pU7wyyy0uV8OgfxV9VHwFcAWH5_bB92VwSXI8GcE85fVRfAWLMRktDX5z3wt9W7lJ4wpjWncFH9up9Q3lt0N7kQR519mNCNDaPN8YCCQ-3S-4AecrR6TOi3z3vUzvPgzX-aUC5FP_pBR58PaBvGecl--vO-euP0kOyH03pZ_fxx_bi93ezub-627W5jaA15IylY0kDnLHXMGdF0vOswYYyZvnZW9r1tpAHXU8IFE9pqKhgQ3jFBOkNEfVl9O_bd60HN0Y86HlTQXt22O7XeYcyEZBI_Q7Ffj3aO4e9iU1ajT8YOg55sWJJqODDOii_y8wv5FJY4lY-oZh3PhZQFwRGZGFKK1p3nA1ZrJmrNRK2ZqFMm5c2XU2OdjB5c1JPx6fyQUKgZAVrcp6Pz1tpzmTEqG07rf9nVk98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851266799</pqid></control><display><type>article</type><title>On the Information Geometry of Audio Streams With Applications to Similarity Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Cont, A ; Dubnov, S ; Assayag, G</creator><creatorcontrib>Cont, A ; Dubnov, S ; Assayag, G</creatorcontrib><description>This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2010.2066266</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Audio signals ; Computation ; Computer applications ; Computer Science ; Engineering Sciences ; Exact sciences and technology ; Extraterrestrial measurements ; Geometry ; Information analysis ; Information geometry ; Information retrieval ; Information theory ; Information, signal and communications theory ; Machine learning ; Miscellaneous ; Multiple signal classification ; Music ; Music information retrieval ; music information retrieval (MIR) ; On-line systems ; Online ; Permission ; Signal and Image processing ; Signal processing ; Signal processing algorithms ; Similarity ; Statistical methods ; Streaming media ; Streams ; Telecommunications and information theory</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2011-05, Vol.19 (4), p.837-846</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</citedby><cites>FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</cites><orcidid>0000-0002-7352-7212 ; 0000-0002-4427-7373 ; 0000-0003-0222-1125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5549864$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5549864$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24135214$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00579590$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cont, A</creatorcontrib><creatorcontrib>Dubnov, S</creatorcontrib><creatorcontrib>Assayag, G</creatorcontrib><title>On the Information Geometry of Audio Streams With Applications to Similarity Computing</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.</description><subject>Applied sciences</subject><subject>Audio signals</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Geometry</subject><subject>Information analysis</subject><subject>Information geometry</subject><subject>Information retrieval</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Machine learning</subject><subject>Miscellaneous</subject><subject>Multiple signal classification</subject><subject>Music</subject><subject>Music information retrieval</subject><subject>music information retrieval (MIR)</subject><subject>On-line systems</subject><subject>Online</subject><subject>Permission</subject><subject>Signal and Image processing</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Similarity</subject><subject>Statistical methods</subject><subject>Streaming media</subject><subject>Streams</subject><subject>Telecommunications and information theory</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0ctq3DAUBmBTWmia9gFKN6JQSheT6si6WEszpElgIIuk7VLIstRRsC1XkgPz9pU7wyyy0uV8OgfxV9VHwFcAWH5_bB92VwSXI8GcE85fVRfAWLMRktDX5z3wt9W7lJ4wpjWncFH9up9Q3lt0N7kQR519mNCNDaPN8YCCQ-3S-4AecrR6TOi3z3vUzvPgzX-aUC5FP_pBR58PaBvGecl--vO-euP0kOyH03pZ_fxx_bi93ezub-627W5jaA15IylY0kDnLHXMGdF0vOswYYyZvnZW9r1tpAHXU8IFE9pqKhgQ3jFBOkNEfVl9O_bd60HN0Y86HlTQXt22O7XeYcyEZBI_Q7Ffj3aO4e9iU1ajT8YOg55sWJJqODDOii_y8wv5FJY4lY-oZh3PhZQFwRGZGFKK1p3nA1ZrJmrNRK2ZqFMm5c2XU2OdjB5c1JPx6fyQUKgZAVrcp6Pz1tpzmTEqG07rf9nVk98</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Cont, A</creator><creator>Dubnov, S</creator><creator>Assayag, G</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7352-7212</orcidid><orcidid>https://orcid.org/0000-0002-4427-7373</orcidid><orcidid>https://orcid.org/0000-0003-0222-1125</orcidid></search><sort><creationdate>20110501</creationdate><title>On the Information Geometry of Audio Streams With Applications to Similarity Computing</title><author>Cont, A ; Dubnov, S ; Assayag, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-941e281bfe4f5fc78b6bb02555cd3fe9dde89c1fd426757aea475126b572bc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Audio signals</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Geometry</topic><topic>Information analysis</topic><topic>Information geometry</topic><topic>Information retrieval</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Machine learning</topic><topic>Miscellaneous</topic><topic>Multiple signal classification</topic><topic>Music</topic><topic>Music information retrieval</topic><topic>music information retrieval (MIR)</topic><topic>On-line systems</topic><topic>Online</topic><topic>Permission</topic><topic>Signal and Image processing</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Similarity</topic><topic>Statistical methods</topic><topic>Streaming media</topic><topic>Streams</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cont, A</creatorcontrib><creatorcontrib>Dubnov, S</creatorcontrib><creatorcontrib>Assayag, G</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cont, A</au><au>Dubnov, S</au><au>Assayag, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Information Geometry of Audio Streams With Applications to Similarity Computing</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>837</spage><epage>846</epage><pages>837-846</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2010.2066266</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7352-7212</orcidid><orcidid>https://orcid.org/0000-0002-4427-7373</orcidid><orcidid>https://orcid.org/0000-0003-0222-1125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2011-05, Vol.19 (4), p.837-846
issn 1558-7916
2329-9290
1558-7924
2329-9304
language eng
recordid cdi_hal_primary_oai_HAL_hal_00579590v1
source IEEE Electronic Library (IEL)
subjects Applied sciences
Audio signals
Computation
Computer applications
Computer Science
Engineering Sciences
Exact sciences and technology
Extraterrestrial measurements
Geometry
Information analysis
Information geometry
Information retrieval
Information theory
Information, signal and communications theory
Machine learning
Miscellaneous
Multiple signal classification
Music
Music information retrieval
music information retrieval (MIR)
On-line systems
Online
Permission
Signal and Image processing
Signal processing
Signal processing algorithms
Similarity
Statistical methods
Streaming media
Streams
Telecommunications and information theory
title On the Information Geometry of Audio Streams With Applications to Similarity Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Information%20Geometry%20of%20Audio%20Streams%20With%20Applications%20to%20Similarity%20Computing&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Cont,%20A&rft.date=2011-05-01&rft.volume=19&rft.issue=4&rft.spage=837&rft.epage=846&rft.pages=837-846&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2010.2066266&rft_dat=%3Cproquest_RIE%3E2263765921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851266799&rft_id=info:pmid/&rft_ieee_id=5549864&rfr_iscdi=true