As(III) biological oxidation by CAsO1 consortium in fixed-bed reactors

In water treatment, removal of arsenite, the most toxic arsenic inorganic form, consists often in its oxidation, followed by precipitation or adsorption step. In this work, this oxidation step was done by a biological process, using an autotrophic bacterial consortium named CAsO1, isolated from a go...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process biochemistry (1991) 2010-02, Vol.45 (2), p.171-178
Hauptverfasser: Michon, Jérôme, Dagot, Christophe, Deluchat, Véronique, Dictor, Marie-Christine, Battaglia-Brunet, Fabienne, Baudu, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 2
container_start_page 171
container_title Process biochemistry (1991)
container_volume 45
creator Michon, Jérôme
Dagot, Christophe
Deluchat, Véronique
Dictor, Marie-Christine
Battaglia-Brunet, Fabienne
Baudu, Michel
description In water treatment, removal of arsenite, the most toxic arsenic inorganic form, consists often in its oxidation, followed by precipitation or adsorption step. In this work, this oxidation step was done by a biological process, using an autotrophic bacterial consortium named CAsO1, isolated from a gold-mining site. A pilot plant was built, consisting of two biological fixed beds, inoculated with the CAsO1 consortium and fed with synthetic water spiked with As(III). Firstly, the hydrodynamic parameters were determined. The residence time distribution modelling showed a plug flow distribution with low diffusion phenomena. Secondly, the kinetic analysis, considering a first order reaction, made it possible to calculate the oxidation kinetic constant (0.04 min −1) and showed a heterogeneous distribution of the active biomass along the reactor. Batch experiments conducted with parts of the bed-support made it possible to characterize this kind of distribution. Finally, the hydrodynamic and kinetic studies enabled us to propose a design approach for such a biological treatment process.
doi_str_mv 10.1016/j.procbio.2009.09.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00557635v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359511309002815</els_id><sourcerecordid>1777123150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-ce83032b7ff05a75a825fbf36e7db3fe5f937b674194ced4185c070d1fdde8583</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxRdRsP75CMKepB62ZjabTfYkpagtFLzoOWSTiaZsNzXZin57s1Q8KgzMMPzeMLyXZVdAZkCgvt3MdsHr1vlZSUgzG4vQo2wCgtOClo04TjNlTcEA6Gl2FuMmAQBAJtnDPE5Xq9VNnuSdf3Vadbn_dEYNzvd5-5Uv5vEJcu376MPg9tvc9bl1n2iKFk0eUOnBh3iRnVjVRbz86efZy8P982JZrJ8eV4v5utCMVEOhUVBCy5ZbS5jiTImS2dbSGrlpqUVmG8rbmlfQVBpNBYJpwokBawwKJuh5dnO4-6Y6uQtuq8KX9MrJ5Xwtxx0hjPGasg9I7PWBTe687zEOcuuixq5TPfp9lDRhgvH_wRJKVoq6SuD0TxA451BSYCSh7IDq4GMMaH-_BSLH1ORG_qQmx9TkWIQm3d1Bh8nFD4dBRu2wT2a4gHqQxrt_LnwDnY6gsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777123150</pqid></control><display><type>article</type><title>As(III) biological oxidation by CAsO1 consortium in fixed-bed reactors</title><source>Elsevier ScienceDirect Journals</source><creator>Michon, Jérôme ; Dagot, Christophe ; Deluchat, Véronique ; Dictor, Marie-Christine ; Battaglia-Brunet, Fabienne ; Baudu, Michel</creator><creatorcontrib>Michon, Jérôme ; Dagot, Christophe ; Deluchat, Véronique ; Dictor, Marie-Christine ; Battaglia-Brunet, Fabienne ; Baudu, Michel</creatorcontrib><description>In water treatment, removal of arsenite, the most toxic arsenic inorganic form, consists often in its oxidation, followed by precipitation or adsorption step. In this work, this oxidation step was done by a biological process, using an autotrophic bacterial consortium named CAsO1, isolated from a gold-mining site. A pilot plant was built, consisting of two biological fixed beds, inoculated with the CAsO1 consortium and fed with synthetic water spiked with As(III). Firstly, the hydrodynamic parameters were determined. The residence time distribution modelling showed a plug flow distribution with low diffusion phenomena. Secondly, the kinetic analysis, considering a first order reaction, made it possible to calculate the oxidation kinetic constant (0.04 min −1) and showed a heterogeneous distribution of the active biomass along the reactor. Batch experiments conducted with parts of the bed-support made it possible to characterize this kind of distribution. Finally, the hydrodynamic and kinetic studies enabled us to propose a design approach for such a biological treatment process.</description><identifier>ISSN: 1359-5113</identifier><identifier>EISSN: 1873-3298</identifier><identifier>DOI: 10.1016/j.procbio.2009.09.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Arsenate ; Arsenite ; Bacteria ; Biological ; Biological oxidation ; CAsO1 consortium ; Environmental Engineering ; Environmental Sciences ; Fixed-bed reactor ; Fluid flow ; Hydrodynamics ; Mathematical models ; Oxidation ; Reaction kinetics ; Reactors ; Water treatment</subject><ispartof>Process biochemistry (1991), 2010-02, Vol.45 (2), p.171-178</ispartof><rights>2009 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-ce83032b7ff05a75a825fbf36e7db3fe5f937b674194ced4185c070d1fdde8583</citedby><cites>FETCH-LOGICAL-c504t-ce83032b7ff05a75a825fbf36e7db3fe5f937b674194ced4185c070d1fdde8583</cites><orcidid>0000-0002-4005-6290 ; 0000-0003-3632-0420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359511309002815$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://brgm.hal.science/hal-00557635$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Michon, Jérôme</creatorcontrib><creatorcontrib>Dagot, Christophe</creatorcontrib><creatorcontrib>Deluchat, Véronique</creatorcontrib><creatorcontrib>Dictor, Marie-Christine</creatorcontrib><creatorcontrib>Battaglia-Brunet, Fabienne</creatorcontrib><creatorcontrib>Baudu, Michel</creatorcontrib><title>As(III) biological oxidation by CAsO1 consortium in fixed-bed reactors</title><title>Process biochemistry (1991)</title><description>In water treatment, removal of arsenite, the most toxic arsenic inorganic form, consists often in its oxidation, followed by precipitation or adsorption step. In this work, this oxidation step was done by a biological process, using an autotrophic bacterial consortium named CAsO1, isolated from a gold-mining site. A pilot plant was built, consisting of two biological fixed beds, inoculated with the CAsO1 consortium and fed with synthetic water spiked with As(III). Firstly, the hydrodynamic parameters were determined. The residence time distribution modelling showed a plug flow distribution with low diffusion phenomena. Secondly, the kinetic analysis, considering a first order reaction, made it possible to calculate the oxidation kinetic constant (0.04 min −1) and showed a heterogeneous distribution of the active biomass along the reactor. Batch experiments conducted with parts of the bed-support made it possible to characterize this kind of distribution. Finally, the hydrodynamic and kinetic studies enabled us to propose a design approach for such a biological treatment process.</description><subject>Arsenate</subject><subject>Arsenite</subject><subject>Bacteria</subject><subject>Biological</subject><subject>Biological oxidation</subject><subject>CAsO1 consortium</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Fixed-bed reactor</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Reaction kinetics</subject><subject>Reactors</subject><subject>Water treatment</subject><issn>1359-5113</issn><issn>1873-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxRdRsP75CMKepB62ZjabTfYkpagtFLzoOWSTiaZsNzXZin57s1Q8KgzMMPzeMLyXZVdAZkCgvt3MdsHr1vlZSUgzG4vQo2wCgtOClo04TjNlTcEA6Gl2FuMmAQBAJtnDPE5Xq9VNnuSdf3Vadbn_dEYNzvd5-5Uv5vEJcu376MPg9tvc9bl1n2iKFk0eUOnBh3iRnVjVRbz86efZy8P982JZrJ8eV4v5utCMVEOhUVBCy5ZbS5jiTImS2dbSGrlpqUVmG8rbmlfQVBpNBYJpwokBawwKJuh5dnO4-6Y6uQtuq8KX9MrJ5Xwtxx0hjPGasg9I7PWBTe687zEOcuuixq5TPfp9lDRhgvH_wRJKVoq6SuD0TxA451BSYCSh7IDq4GMMaH-_BSLH1ORG_qQmx9TkWIQm3d1Bh8nFD4dBRu2wT2a4gHqQxrt_LnwDnY6gsQ</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Michon, Jérôme</creator><creator>Dagot, Christophe</creator><creator>Deluchat, Véronique</creator><creator>Dictor, Marie-Christine</creator><creator>Battaglia-Brunet, Fabienne</creator><creator>Baudu, Michel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4005-6290</orcidid><orcidid>https://orcid.org/0000-0003-3632-0420</orcidid></search><sort><creationdate>20100201</creationdate><title>As(III) biological oxidation by CAsO1 consortium in fixed-bed reactors</title><author>Michon, Jérôme ; Dagot, Christophe ; Deluchat, Véronique ; Dictor, Marie-Christine ; Battaglia-Brunet, Fabienne ; Baudu, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-ce83032b7ff05a75a825fbf36e7db3fe5f937b674194ced4185c070d1fdde8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arsenate</topic><topic>Arsenite</topic><topic>Bacteria</topic><topic>Biological</topic><topic>Biological oxidation</topic><topic>CAsO1 consortium</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Fixed-bed reactor</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Reaction kinetics</topic><topic>Reactors</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michon, Jérôme</creatorcontrib><creatorcontrib>Dagot, Christophe</creatorcontrib><creatorcontrib>Deluchat, Véronique</creatorcontrib><creatorcontrib>Dictor, Marie-Christine</creatorcontrib><creatorcontrib>Battaglia-Brunet, Fabienne</creatorcontrib><creatorcontrib>Baudu, Michel</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Process biochemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michon, Jérôme</au><au>Dagot, Christophe</au><au>Deluchat, Véronique</au><au>Dictor, Marie-Christine</au><au>Battaglia-Brunet, Fabienne</au><au>Baudu, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>As(III) biological oxidation by CAsO1 consortium in fixed-bed reactors</atitle><jtitle>Process biochemistry (1991)</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>45</volume><issue>2</issue><spage>171</spage><epage>178</epage><pages>171-178</pages><issn>1359-5113</issn><eissn>1873-3298</eissn><abstract>In water treatment, removal of arsenite, the most toxic arsenic inorganic form, consists often in its oxidation, followed by precipitation or adsorption step. In this work, this oxidation step was done by a biological process, using an autotrophic bacterial consortium named CAsO1, isolated from a gold-mining site. A pilot plant was built, consisting of two biological fixed beds, inoculated with the CAsO1 consortium and fed with synthetic water spiked with As(III). Firstly, the hydrodynamic parameters were determined. The residence time distribution modelling showed a plug flow distribution with low diffusion phenomena. Secondly, the kinetic analysis, considering a first order reaction, made it possible to calculate the oxidation kinetic constant (0.04 min −1) and showed a heterogeneous distribution of the active biomass along the reactor. Batch experiments conducted with parts of the bed-support made it possible to characterize this kind of distribution. Finally, the hydrodynamic and kinetic studies enabled us to propose a design approach for such a biological treatment process.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.procbio.2009.09.003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4005-6290</orcidid><orcidid>https://orcid.org/0000-0003-3632-0420</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-5113
ispartof Process biochemistry (1991), 2010-02, Vol.45 (2), p.171-178
issn 1359-5113
1873-3298
language eng
recordid cdi_hal_primary_oai_HAL_hal_00557635v1
source Elsevier ScienceDirect Journals
subjects Arsenate
Arsenite
Bacteria
Biological
Biological oxidation
CAsO1 consortium
Environmental Engineering
Environmental Sciences
Fixed-bed reactor
Fluid flow
Hydrodynamics
Mathematical models
Oxidation
Reaction kinetics
Reactors
Water treatment
title As(III) biological oxidation by CAsO1 consortium in fixed-bed reactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=As(III)%20biological%20oxidation%20by%20CAsO1%20consortium%20in%20fixed-bed%20reactors&rft.jtitle=Process%20biochemistry%20(1991)&rft.au=Michon,%20J%C3%A9r%C3%B4me&rft.date=2010-02-01&rft.volume=45&rft.issue=2&rft.spage=171&rft.epage=178&rft.pages=171-178&rft.issn=1359-5113&rft.eissn=1873-3298&rft_id=info:doi/10.1016/j.procbio.2009.09.003&rft_dat=%3Cproquest_hal_p%3E1777123150%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777123150&rft_id=info:pmid/&rft_els_id=S1359511309002815&rfr_iscdi=true