Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition

Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-03, Vol.98 (11), p.112501-112501-3
Hauptverfasser: Da Col, S., Darques, M., Fruchart, O., Cagnon, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112501-3
container_issue 11
container_start_page 112501
container_title Applied physics letters
container_volume 98
creator Da Col, S.
Darques, M.
Fruchart, O.
Cagnon, L.
description Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories.
doi_str_mv 10.1063/1.3562963
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00553589v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00553589v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yBXD1uTzSbZvQilaCsUBNFzmM0mNbpNSrJV6tO7a0s9eRpm5vv_w4fQNSUTSgS7pRPGRV4JdoJGlEiZMUrLUzQihLBMVJyeo4uU3vuV54yNUHw2zVZ3LngcLF7DypsupA46p7HznYnw-0z9gpNpbRbiCrz7Ng2GGGGXhph3-sO02IMPXy6ahLfJ-RWGLqz7mhZ2JuLGbEJyQ9clOrPQJnN1mGP0-nD_Mltky6f542y6zDTjrMssKQXnBYeKNVVdQ1VIaXPbFJQUjSSgSZ1LUfNcME25LIpSmFLUeQ2yT0nDxuhm3_sGrdpEt4a4UwGcWkyXarj1DjjjZfWZ_7E6hpSisccAJWoQq6g6iO3Zuz2btBtEBf8_fLSrglUHu-wHp5iBeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</title><source>American Institute of Physics</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Da Col, S. ; Darques, M. ; Fruchart, O. ; Cagnon, L.</creator><creatorcontrib>Da Col, S. ; Darques, M. ; Fruchart, O. ; Cagnon, L.</creatorcontrib><description>Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3562963</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>Applied physics letters, 2011-03, Vol.98 (11), p.112501-112501-3</ispartof><rights>2011 American Institute of Physics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</citedby><cites>FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</cites><orcidid>0000-0002-5023-9437 ; 0000-0001-7717-5229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3562963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00553589$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Da Col, S.</creatorcontrib><creatorcontrib>Darques, M.</creatorcontrib><creatorcontrib>Fruchart, O.</creatorcontrib><creatorcontrib>Cagnon, L.</creatorcontrib><title>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</title><title>Applied physics letters</title><description>Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsH3yBXD1uTzSbZvQilaCsUBNFzmM0mNbpNSrJV6tO7a0s9eRpm5vv_w4fQNSUTSgS7pRPGRV4JdoJGlEiZMUrLUzQihLBMVJyeo4uU3vuV54yNUHw2zVZ3LngcLF7DypsupA46p7HznYnw-0z9gpNpbRbiCrz7Ng2GGGGXhph3-sO02IMPXy6ahLfJ-RWGLqz7mhZ2JuLGbEJyQ9clOrPQJnN1mGP0-nD_Mltky6f542y6zDTjrMssKQXnBYeKNVVdQ1VIaXPbFJQUjSSgSZ1LUfNcME25LIpSmFLUeQ2yT0nDxuhm3_sGrdpEt4a4UwGcWkyXarj1DjjjZfWZ_7E6hpSisccAJWoQq6g6iO3Zuz2btBtEBf8_fLSrglUHu-wHp5iBeQ</recordid><startdate>20110314</startdate><enddate>20110314</enddate><creator>Da Col, S.</creator><creator>Darques, M.</creator><creator>Fruchart, O.</creator><creator>Cagnon, L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid></search><sort><creationdate>20110314</creationdate><title>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</title><author>Da Col, S. ; Darques, M. ; Fruchart, O. ; Cagnon, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Col, S.</creatorcontrib><creatorcontrib>Darques, M.</creatorcontrib><creatorcontrib>Fruchart, O.</creatorcontrib><creatorcontrib>Cagnon, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Col, S.</au><au>Darques, M.</au><au>Fruchart, O.</au><au>Cagnon, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</atitle><jtitle>Applied physics letters</jtitle><date>2011-03-14</date><risdate>2011</risdate><volume>98</volume><issue>11</issue><spage>112501</spage><epage>112501-3</epage><pages>112501-112501-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3562963</doi><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2011-03, Vol.98 (11), p.112501-112501-3
issn 0003-6951
1077-3118
language eng
recordid cdi_hal_primary_oai_HAL_hal_00553589v2
source American Institute of Physics; AIP Digital Archive; Alma/SFX Local Collection
subjects Condensed Matter
Materials Science
Physics
title Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20magnetostatic%20interactions%20in%20self-organized%20arrays%20of%20nickel%20nanowires%20using%20atomic%20layer%20deposition&rft.jtitle=Applied%20physics%20letters&rft.au=Da%20Col,%20S.&rft.date=2011-03-14&rft.volume=98&rft.issue=11&rft.spage=112501&rft.epage=112501-3&rft.pages=112501-112501-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3562963&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00553589v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true