Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition
Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2011-03, Vol.98 (11), p.112501-112501-3 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112501-3 |
---|---|
container_issue | 11 |
container_start_page | 112501 |
container_title | Applied physics letters |
container_volume | 98 |
creator | Da Col, S. Darques, M. Fruchart, O. Cagnon, L. |
description | Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories. |
doi_str_mv | 10.1063/1.3562963 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00553589v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00553589v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yBXD1uTzSbZvQilaCsUBNFzmM0mNbpNSrJV6tO7a0s9eRpm5vv_w4fQNSUTSgS7pRPGRV4JdoJGlEiZMUrLUzQihLBMVJyeo4uU3vuV54yNUHw2zVZ3LngcLF7DypsupA46p7HznYnw-0z9gpNpbRbiCrz7Ng2GGGGXhph3-sO02IMPXy6ahLfJ-RWGLqz7mhZ2JuLGbEJyQ9clOrPQJnN1mGP0-nD_Mltky6f542y6zDTjrMssKQXnBYeKNVVdQ1VIaXPbFJQUjSSgSZ1LUfNcME25LIpSmFLUeQ2yT0nDxuhm3_sGrdpEt4a4UwGcWkyXarj1DjjjZfWZ_7E6hpSisccAJWoQq6g6iO3Zuz2btBtEBf8_fLSrglUHu-wHp5iBeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</title><source>American Institute of Physics</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Da Col, S. ; Darques, M. ; Fruchart, O. ; Cagnon, L.</creator><creatorcontrib>Da Col, S. ; Darques, M. ; Fruchart, O. ; Cagnon, L.</creatorcontrib><description>Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3562963</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>Applied physics letters, 2011-03, Vol.98 (11), p.112501-112501-3</ispartof><rights>2011 American Institute of Physics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</citedby><cites>FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</cites><orcidid>0000-0002-5023-9437 ; 0000-0001-7717-5229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3562963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00553589$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Da Col, S.</creatorcontrib><creatorcontrib>Darques, M.</creatorcontrib><creatorcontrib>Fruchart, O.</creatorcontrib><creatorcontrib>Cagnon, L.</creatorcontrib><title>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</title><title>Applied physics letters</title><description>Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsH3yBXD1uTzSbZvQilaCsUBNFzmM0mNbpNSrJV6tO7a0s9eRpm5vv_w4fQNSUTSgS7pRPGRV4JdoJGlEiZMUrLUzQihLBMVJyeo4uU3vuV54yNUHw2zVZ3LngcLF7DypsupA46p7HznYnw-0z9gpNpbRbiCrz7Ng2GGGGXhph3-sO02IMPXy6ahLfJ-RWGLqz7mhZ2JuLGbEJyQ9clOrPQJnN1mGP0-nD_Mltky6f542y6zDTjrMssKQXnBYeKNVVdQ1VIaXPbFJQUjSSgSZ1LUfNcME25LIpSmFLUeQ2yT0nDxuhm3_sGrdpEt4a4UwGcWkyXarj1DjjjZfWZ_7E6hpSisccAJWoQq6g6iO3Zuz2btBtEBf8_fLSrglUHu-wHp5iBeQ</recordid><startdate>20110314</startdate><enddate>20110314</enddate><creator>Da Col, S.</creator><creator>Darques, M.</creator><creator>Fruchart, O.</creator><creator>Cagnon, L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid></search><sort><creationdate>20110314</creationdate><title>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</title><author>Da Col, S. ; Darques, M. ; Fruchart, O. ; Cagnon, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-f0865545a93d9bba9477f2fd4104d70ac0b276b5263c1574486e86b2ba75457e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Col, S.</creatorcontrib><creatorcontrib>Darques, M.</creatorcontrib><creatorcontrib>Fruchart, O.</creatorcontrib><creatorcontrib>Cagnon, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Col, S.</au><au>Darques, M.</au><au>Fruchart, O.</au><au>Cagnon, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition</atitle><jtitle>Applied physics letters</jtitle><date>2011-03-14</date><risdate>2011</risdate><volume>98</volume><issue>11</issue><spage>112501</spage><epage>112501-3</epage><pages>112501-112501-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Ordered arrays of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due to their dense packing, strong magnetostatic interactions prevent the manipulation of wires individually. Using atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces magnetostatic interactions, yielding fully remanent hysteresis loops. This is a first step toward the use of such arrays for magnetic racetrack memories.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3562963</doi><orcidid>https://orcid.org/0000-0002-5023-9437</orcidid><orcidid>https://orcid.org/0000-0001-7717-5229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2011-03, Vol.98 (11), p.112501-112501-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00553589v2 |
source | American Institute of Physics; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Condensed Matter Materials Science Physics |
title | Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20magnetostatic%20interactions%20in%20self-organized%20arrays%20of%20nickel%20nanowires%20using%20atomic%20layer%20deposition&rft.jtitle=Applied%20physics%20letters&rft.au=Da%20Col,%20S.&rft.date=2011-03-14&rft.volume=98&rft.issue=11&rft.spage=112501&rft.epage=112501-3&rft.pages=112501-112501-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3562963&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00553589v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |